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One of the key objectives in geophysics is to characterize the subsurface through
the process of analyzing and interpreting geophysical field data that are typically
acquired at the surface. Data-driven deep learning methods have enormous potential
for accelerating and simplifying the process but also face many challenges, including
poor generalizability, weak interpretability, and physical inconsistency. We present
three strategies for imposing domain knowledge constraints on deep neural networks
(DNNs) to help address these challenges. The first strategy is to integrate constraints
into data by generating synthetic training datasets through geological and geophysical
forward modeling and properly encoding prior knowledge as part of the input fed into
the DNNs. The second strategy is to design nontrainable custom layers of physical
operators and preconditioners in the DNN architecture to modify or shape feature
maps calculated within the network to make them consistent with the prior knowledge.
The final strategy is to implement prior geological information and geophysical laws
as regularization terms in loss functions for training the DNNs. We discuss the
implementation of these strategies in detail and demonstrate their effectiveness by
applying them to geophysical data processing, imaging, interpretation, and subsurface
model building.
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Geophysical problems typically involve dealing with large amounts of spatial and temporal
data that generally are obtained from various sources and show high heterogeneity. Deep
neural networks (DNNs) can play an important role in this because of their versatility in
extracting information, merging multisource information, universal approximation, and
high expressivity. During the past decade, DNNs have been widely used in various
geophysical research areas (1–5), including seismology (6–14), atmospheric science
(15–17), and planetary and space science (18–20). DNNs have been particularly
intensively studied in exploration of geophysics to accelerate and advance the entire
workflow of data processing (21–24), tomography (25–29), forward modeling (30–35),
migration (36–40), velocity model building (41–47), and interpretation (48–53).

However, there still remain many challenges in employing DNNs to solve geophysical
problems. One challenge is the lack of sufficient training datasets in the geophysics field,
wherein most existing data are unlabeled. Moreover, the limited available labels of field
geophysical data are often highly subjective or biased (1) because the ground truth of
geophysical research objects is typically unknown or unreliable. The insufficient and
inaccurate labels of training datasets limit the performance of DNNs, especially of
those based on supervised learning. Another challenge is the variety of field geophysical
data that the trained DNNs are applied to. In practice, the geophysical data fed into
a trained DNN model can significantly differ from the training data because of the
variation in data acquisition (e.g., spatial and temporal resolution, frequencies, and survey
geometries), noise, and geophysical processing workflows. Together, these challenges
lead to a poor generalizability of trained DNN models when applied to process or
interpret geophysical datasets. Some other challenges, including low interpretability and
poor physical consistency (2), which arise from the common theoretical weakness of
DNNs, may be amplified in geophysical applications owing to the high complexity and
uncertainty of geophysical data.

One potential approach to improve model generalizability, interpretability, and phys-
ical consistency is to impose domain knowledge constraints (prior geological information
and/or geophysical laws) on the DNNs. Reichstein et al. (2) suggested to integrate con-
textual cues in deep learning to further improve its predictive ability by developing hybrid
model- and data-driven networks coupling domain knowledge and data statistics learning.
Some authors suggested designing specialized network architectures to incorporate
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prior constraints for seismic waveform inversion (54) and geome-
chanical log prediction (55). Di et al. (53) and Kong et al. (56)
imposed constraints on DNNs by inputting manually interpreted
results and physics-based features into the networks, respectively.
Other authors (57–60) integrated physical constraints in DNNs
through loss functions for training. The significance of imposing
prior constraints on DNNs is highly recognized, and this
topic is recommended as the next research focus in DNNs for
geosciences (2, 5). However, the strategies to implement such
constraints are incompletely discussed, and some are unexplored.
It is worthwhile to provide a general recipe to follow for imposing
geological and/or geophysical constraints on DNNs.

We present a comprehensive discussion of three general
strategies (Fig. 1) to incorporate geological and geophysical
constraints into deep learning methods to improve their accuracy
and reliability in solving geophysical problems. We first show
that integrating prior knowledge into training data and input
data of neural networks is an effective method to impose
constraints on data-driven deep learning. We then present an
even more effective approach to impose constraints by defining
custom layers with prior knowledge in a neural network and
preconditioning feature maps calculated in the network. The
prior constraints imposed in this manner are considered hard
constraints because they are satisfied not only in the training
process but also in the inference step. Finally, we discuss the
most straightforward method to impose constraints on DNNs by
defining loss functions with prior knowledge. In explaining each
of the three strategies, we provide examples of their applications
in geophysical data processing, imaging, interpretation, and
subsurface model building. However, we believe that these
strategies can not only be applied to these specific topics but
also to more general geophysical problems.

Imposing Constraints on Data

Deep learning is a data-driven method, and it is generally agreed
that data and their characteristics determine its upper limit (61).
In this section, we demonstrate that the performance of a DNN
is significantly affected by the features included in the datasets

to train the network and the data fed into the network. This
indicates that we can effectively impose prior constraints on a
DNN by embedding prior knowledge or expected features into
the training or input data.

Embedding Prior Knowledge in Training Data. The lack of
labeled training data remains a big challenge in applying DNNs
in the geoscience field because the subsurface ground truth
is typically unknown and manual labeling is highly subjective
and labor-intensive. One method to address this challenge is
to generate synthetic training datasets with labels by using
various numerically geological and geophysical forward modeling
methods (6, 43, 52, 62–67).

In this approach, the ground truth labels are automatically
generated, eliminating the need for human labeling. In addition,
this method is flexible in that modeling parameters are randomly
chosen to generate numerous training datasets with diverse
features. Here, we consider forward modeling as an approach
to embed prior knowledge into training datasets, which are then
used to train a DNN to extract the embedded knowledge from
the datasets. Such a trained DNN is expected to extract the
similar knowledge from field data that resemble the synthetic
data.
General workflow. Most geophysical problems involve extracting
geological features or knowledge from geophysical data. There-
fore, preparing training datasets for geophysical problems typi-
cally includes generating geophysical datasets and corresponding
geological labels. Fig. 2 shows a general workflow to generate
geophysical training datasets and corresponding labels. First,
numerical geological forward modeling is performed to obtain
digital geology models m(x), which can be expressed as follows:

m(x) = F1(x,�1), [1]

where x denotes the model space and F1 represents geological
forward processes, such as stratigraphic (68, 69), channel (70, 71),
and structural (67) forward modeling, as shown in the Upper Left
panels in Fig. 2. The forward simulation processes F1 are typically
operators or equations that are carefully formulated with prior
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Fig. 1. Three strategies for integrating prior geological and geophysical constraints (in red) into a regular DNN framework (in blue). The first strategy is to
integrate prior knowledge into data including input data with embedded knowledge and synthetic training data simulated by geology- and geophysics-informed
forward modeling. The second strategy is to impose constraints directly on the network including defining geologically and geophysically meaningful layers
and preconditioning the feature maps in the network. The third strategy is to define a knowledge-based loss function for training the network.
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Fig. 2. A strategy to impose constraints on a DNN by creating synthetic training datasets based on prior knowledge. In this strategy, we first automatically
generate numerous synthetic training datasets by numerical forward modeling which embeds prior geological and geophysical knowledge in the data. Using
the generated training data, a neural network is then trained or constrained to extract the prior knowledge embedded in the data.

knowledge of the geology. The �1 represents a set of modeling
parameters that are randomly selected from all possible options
to generate numerous and diverse models. Through forward
modeling, diverse geological properties or features are embedded
in the models. The labels of the geological features or information
of interest, such as sedimentary facies, channel facies, horizons,
and faults, in the model space can be automatically defined, as
shown in the lower left panels in Fig. 2. These geological labels
{LF} are used to supervise the training of DNNs.

The simulated geological models can be converted to models
of geophysical properties, such as densities, velocities, and
impedances, by following prior rules. Therefore, using the
simulated models m, we can perform geophysical forward
modeling to simulate geophysical data d as follows:

d = F2(m,�2), [2]

where F2 represents geophysical forward modeling processes or
operators, such as wave propagation and convolution, and �2
denotes a set of modeling parameters randomly selected from all
possible options to generate numerous and diverse geophysical
data {DF}. The simulated geophysical data shown in the right
panel in Fig. 2 are 3D seismic images that are computed by
convolving reflectivity models with Ricker wavelets. These three
images, from top to bottom, contain geologically meaningful
information on stratigraphic geometries, channel features, and
folding and faulting structures, respectively. These image features
correspond to the geological knowledge (like the geological labels
in the lower left panels in Fig. 2) embedded in the geological
models that are used to simulate the images. The goal is to use
the pair of training datasets {DF} and {LF} to train a DNN that
can automatically and accurately extract the geological knowledge
embedded in the geophysical data.

This workflow can be summarized as a two-step process of
first performing forward simulation with well-defined equations
or prior knowledge to generate data and then training DNNs

to achieve an inverse mapping F(�) of knowledge from the
generated data:

F1(x,�1)→ m(x)→ F2(m(x),�2)→ d
m̃(x)← F(�)← d

. [3]

Inverse mapping of geological knowledge from geophysical
data is typically more challenging than the forward process and is
sometimes hardly defined by equations. DNNs are powerful in
statistically approximating such complex mappings by learning
from a large number of training datasets. Note that the forward
modeling of the training data and the training process of a DNN
can be executed simultaneously so that the data generation can
be adaptively stopped when the training converges.

Sometimes we may want to use a DNN to approximate
geophysical forward modeling to accelerate the data simulation.
In this case, we do not need to explicitly generate data to train
the DNN. Instead, we can include physical forward modeling as
part of the DNN architecture or training loop (3) where physical
equations or operators are implemented in the loss function
to serve as a physical supervision for training the DNN. This
is actually a classic type of unsupervised learning or physics-
informed neural networks, which we discuss in more detail in
the section on imposing constraints on loss functions.

Various DNN models, trained by synthetic datasets, have
been successfully applied to solve multiple geophysical problems
including seismic denoising (7, 22, 72, 73), seismic migra-
tion (36, 40), velocity model building (25, 29, 42, 43, 45, 74,
75), impedance inversion (62, 76), and seismic interpretation
(52, 71, 77, 78). As shown in Fig. 3, synthetic training datasets,
generated by geophysical forward simulation, have been used to
train DNNs (42, 43, 45, 46) to direct build velocity models
ṽ(x, z) from recorded raw seismic gathers s(o; x, t) in the domain
of space (x), time (t), and offset (o). In these processes, prior
domain knowledge (i.e., the physical relationship between the
velocity models and simulated data) is embedded in the synthetic
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Fig. 3. An example of integrating prior knowledge into training datasets.
Based on the physical relationships between velocity models and seis-
mic gathers, we can perform physics-based forward simulation to create
numerous synthetic training datasets from which DNNs learn direct velocity
model building from recorded raw seismic gathers e.g., refs. 42, 43, 46, and 45.

training datasets by physics-based forward modeling. DNNs
are constructed to learn from the training datasets to infer the
direct mapping from data (semblance cubes or seismic gathers)
to velocity models. These methods provide a potentially ideal
means to directly image the subsurface from recorded geophysical
data without the need to solve computationally expensive and ill-
posed inversion problems as in conventional geophysical imaging
workflows. However, they have been rarely applied to complex
field examples with desirable results. This is probably because the
size and richness of the synthetic training datasets are insufficient
and the field examples can strongly differ from the training
datasets in terms of geological background, data acquisition
(including spatial and temporal resolution, frequencies, and
survey geometries), noise, and processing errors. Improving the
diversity of synthetic training datasets is essential, and some
authors (42) suggested to use generative adversarial networks (79)
for this purpose.
Fault interpretation with synthetic training datasets. To better
explain how the diversity and authenticity of synthetic training
datasets affect the performance of a DNN model, we take con-
volutional neural network (CNN)-based seismic fault detection
as an example. We consider fault detection as a binary image
segmentation problem and use the CNN model proposed in ref.
52 for segmentation. The model was trained using the synthetic
datasets (SI Appendix, Fig. S1A) published along with (52), and
a balanced cross-entropy loss function was used to optimize the
network parameters. This model has been successfully applied
to multiple field examples (52) but failed to compute a clean
or continuous fault detection in our example (SI Appendix, Fig.
S1D). Moreover, this model completely missed the detection of
the large fault highlighted by the red arrows in SI Appendix,
Fig. S1C.

To improve the performance of the CNN model, we increased
the diversity of the synthetic training datasets in three aspects.
First, in the reported synthetic seismic images (52), all faults
were mainly featured as reflection discontinuities caused by fault

displacement. The actual fault highlighted by the red arrows
in SI Appendix, Fig. S1C, however, appears as consistent and
strong reflection features, which significantly differ from the
synthetic fault features. Therefore, we specifically built fault
surfaces whose hanging-wall and foot-wall block impedances
appeared high contrasts to generate continuous and strong
reflection features at the faults highlighted by the red arrows
in SI Appendix, Fig. S1B. Second, seismic fault detection is
typically sensitive to discontinuity features such as noise and data
processing artifacts or errors. However, the reported synthetic
seismic images (52) contained only simple random noise, which
is insufficient to approximate the discontinuity and noisy features
in field seismic images. Therefore, we extracted real noise and
artifacts from multiple field seismic images using a structure-
oriented smoothing filter and added the extracted features to the
clean synthetic seismic images to make them more realistic (SI
Appendix, Fig. S1B). Third, we further increased the diversity of
fault patterns in the synthetic training datasets. In particular, we
included more low-dip angle faults and corresponding dragging
features. We retrained the CNN model with the updated training
datasets and applied the retrained model to the field seismic image
(SI Appendix, Fig. S1C). We thus obtained an updated fault
detection result (SI Appendix, Fig. S1E) in which the fault features
are substantially cleaner and more continuous than those in SI
Appendix, Fig. S1D. Moreover, the large fault (highlighted by red
arrows in SI Appendix, Fig. S1C), misdetected in SI Appendix,
Fig. S1D, was consistently detected in the updated result in SI
Appendix, Fig. S1E.

Training dataset diversity is important for training a well-
generalized DNN model. However, in practice, it is difficult to
prepare a completely diverse training dataset, especially in the
geophysics field. The above example demonstrates that when
the trained model does not work well for specific test data,
we may first check whether the training dataset is sufficiently
diverse to include the features or patterns appearing in the test
data or not. If not, we may consider updating and enriching
the training dataset based on prior knowledge or information
about the test data, including visual features, sampling rates,
and frequency components. Embedding prior knowledge or
information in the training datasets is an effective means to guide
a DNN model to reasonably perform predictions according to
expectancy. However, this is an indirect manner to impose prior
knowledge, as desired features need to be first simulated in the
synthetic data and the DNN model needs to be retrained using
these data to learn the features. In addition, some actions in
simulating realistic features (e.g., adding noise and artifacts) in
synthetic data are useful but may not be physically or geologically
meaningful.

Embedding Prior Constraints in Input Data. Another method to
impose constraints on data is to properly embed or encode prior
knowledge or information as tensors that can be directly fed into
the DNN model. The advantage of this approach is that we can
implicitly impose constraints on the DNN model in the inference
step so as to effectively introduce human interactions when
applying the model to the test data. Some authors have shown
that inputting prior information, such as subsurface structural
features (80), low-frequency data features (81), and initial velocity
models (29), into DNNs is helpful to improve their robustness for
seismic full waveform inversion. Below, we present two examples
to illustrate this in detail.
Relative geologic time (RGT) estimation with interpreted horizons.
Estimating an RGT volume from a 3D migrated seismic image is
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a volumetric method for interpreting a full volume of seismic
horizons and building stratigraphic models (82). However,
estimating an accurate or geologically reasonable RGT volume
remains challenging in cases where the input seismic image is
complicated by growing faults, unconformities, heavy noise, or
poor imaging quality. Moreover, owing to the limited seismic
resolution or imaging errors, a seismic reflection does not
necessarily follow a chronostratigraphic horizon or surface with
constant geologic time. In such cases, none of the data-driven
methods can obtain a geologically reasonable RGT result or
horizon by exactly fitting or following the seismic reflections.
Therefore, some horizons, manually interpreted based on prior
geological knowledge, are typically required to be used as
constraints or guidance to obtain reasonable RGT estimations
in the above-mentioned complicated cases.

The Upper panels in Fig. 4 show an example of deep-learning-
based RGT estimation (Fig. 4B) from an input seismic image
(Fig. 4A) complicated by growing faults. This DNN was designed
using a vision transformer (83) and trained with synthetic datasets
generated by structural and geophysical modeling (67). A hybrid
loss function of mean square error and multiscale structural
similarity was used to optimize the network parameters. The
trained DNN model worked well in multiple field examples
and produced a visually reasonable RGT result with sharp
fault features in the example shown in Fig. 4B. However, the
horizons, extracted as contours of the estimated RGT result, did
not accurately follow seismic reflections, especially in the areas
crossing the faults, which are highlighted by the white ellipses in
Fig. 4C . The estimated horizons (red dashed curves in Fig. 4D),
especially the Uppermost one, did not follow the corresponding
manually interpreted horizons (blue, cyan, and orange curves).

To improve the performance of the DNN model, we retrained
it using the same synthetic datasets but with a two-channel
input of a seismic image and a constraint image of interpreted
horizons. The constraint image was of the same size as the
seismic image and was defined as a mask with zeros everywhere,

except at the positions near the interpreted horizons. The values
near an interpreted horizon were defined as the average of the
heights (vertical coordinates) of the horizon. By embedding the
interpreted horizons into the input in this manner, we were able
to effectively impose the constraints of the horizons on the DNN
and obtain a substantially more reasonable result, as shown in
the Lower panels in Fig. 4.
Implicit structural modeling with faults. Building a structure
model typically requires or involves frequent and intensive human
interactions to update the model. When structural modeling
is implemented through DNNs (84–86), the most convenient
means to incorporate human interactions is to embed them into
the inputs of the DNNs. Fig. 5 shows an example of CNN-
based implicit structural modeling (86) with a two-channel input
horizon and fault segments. As shown in the Upper panels in
Fig. 5, with the input of horizon segments and an empty fault
mask, the DNN predicted a reasonable implicit structural model
(upper middle panel in Fig. 5), with the folding structures of
the layers fitting the input horizons. With the knowledge of the
subsurface faults, we input the known faults as a binary mask
combined with the horizons to the same DNN and obtained
an updated structural model (Lower Middle panel in Fig. 5) that
contained sharp fault structures corresponding to the input faults
but still fitted the folding structures of the input horizons. As
shown in the Right panels in Fig. 5, the horizons (black dashed
curves) extracted from the two predicted structural models both
matched with the input horizon segments (colored curves) well.
This indicates that a ground truth of the subsurface is generally
missing and a solution based on limited data or prior information
(e.g., the horizons only) of the subsurface is typically nonunique.

In most geoscience problems, the solution must be continu-
ously updated by integrating gradually updated data and prior
knowledge. Deep learning provides a convenient means to merge
all types of input data and prior information (that may be
from various sources and modalities) to make a comprehensive
prediction. Embedding prior information into the input of

B C D

E F G H

A

Fig. 4. DNN-based RGT estimation and horizon extraction without (Upper panels) and with (Lower panels) inputting constraints of manually interpreted horizons.
Without the input of horizon constraints, the contours (horizons) extracted from the estimated RGT result, did not accurately follow seismic reflections, especially
in the areas highlighted by the white ellipses in (C).
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DNN

Shared model

DNN

Input faults

Input horizon segments

Implicit structural model

Implicit structural model Horizon fitting

Horizon fitting

Fig. 5. DNN-based implicit structural modeling without (an empty fault mask, Upper panels) and with (Lower panels) inputting constraints of a fault mask
(Lower Left image). Both models fit the shared input horizons, but the lower one with the prior constraints of input faults generates sharp fault structures.

DNNs is a convenient means to impose constraints on or
implement human interactions in the trained DNNs in the
inference step to improve their generalizability and obtain
geologically or geophysically reasonable results. Moreover, the
inference step of a trained DNN model is highly efficient; we
can quickly or even immediately obtain an updated result by
modifying the inputs of the model.

Integrating Constraints into Network

We discussed that embedding prior knowledge into the training
or input data is an effective method to impose constraints on
DNNs. However, constraints imposed in this manner are not
guaranteed to be satisfied by the output of a DNN in the inference
step. We present two methods to impose hard constraints on
a DNN by defining custom layers and implementing feature
preconditioning with prior knowledge in the DNN architecture.

DefiningCustomLayers. To explain the idea of designing custom
neural network layers with prior constraints, we use two examples
of RGT estimation (Fig. 6) and vehicle trace extraction from
distributed acoustic sensing (DAS) data (Fig. 7).
RGT estimation with physical layers. The upper panels in Fig. 6
show an example of RGT (τ (x, z)) estimation from the input of

a seismic image (s(x, z)) and some manually interpreted horizons
by using the same DNN model as in Fig. 4. From the estimated
RGT map, we extracted contours to obtain the horizons in
Fig. 6C , most of which accurately followed seismic reflections.
However, we also observed circular horizons (in the red boxed
area in Fig. 6B), which are geologically unreasonable as circular
geologic layers are rarely observed in the subsurface. In most
cases (without structural inversion), the geologic time of layers
increases vertically. This prior knowledge can be implemented as
a hard constraint to eliminate the unreasonably circular contours
(horizons) in the RGT estimation.

To implement the constraint that ensures a vertically in-
creasing RGT result, we assumed that the DNN predicts an
intermediate result of the vertical RGT derivative (τz(x, z)) as
shown in Fig. 6D. We applied an activation function, rectified
linear unit (ReLu), to the RGT derivative

f (τz) = max(0, τz) = τ+
z , [4]

which yielded a nonnegative map of derivatives τ+
z (x, z)

(Fig. 6E). We finally computed a final RGT map τ (x, z) by
integrating the derivative in the vertical direction, as follows:

τ (x, z) =
∫ z

0
τ+
z (x, z)dz. [5]

Layers with prior constraints: 

Geologically 
unreasonable

Geologically 
reasonable

Input seismic Predicted RGT

RGT derivative
Predicted RGT

RGT contours 
or horizons

RGT contours 
or horizons

011

0.02 0.2 0.0 0.2
RGT derivative

A C

D E F G

B

Fig. 6. DNN-based RGT estimation and horizon extraction without (Upper panels) and with (Lower panels) custom neural layers that are implemented with
prior constraints. The custom neural layers not only ensure a final reasonable RGT estimation but also yield an intermediate result of RGT derivatives that could
be used as a byproduct to highlight unconformities as denoted by the white arrows in (E).
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CNN-2CNN-1

A B

C D

E

Fig. 7. Custom neural layers of Hough transform (HT) are implemented in the DNN for automatic vehicle tracking and speed estimation from distributed
acoustic sensing data. With these custom layers, the prior constraint that vehicle traces are locally linear is effectively imposed on the DNN to ensure complete
line detections as shown in (E). In addition, it is straightforward to estimate the vehicle speed (color of the lines in (E) in the HT domain (�, �) where the located
� can be directly converted to the speed. The white arrows in (A) denote linear vehicle traces recorded in the raw DAS data while the red circles in (D) highlight
focused dots that correspond to the detected linear traces in the HT domain.

Such an integration can be simply implemented with the
cumsum function in Python. This block (red dashed box in
Fig. 6) of ReLu and integration layers implements physical
operators with prior constraints and contains no training pa-
rameters. However, this block is also part of the overall DNN
architecture and is executed in both the training and inference
steps to ensure a final RGT result (Fig. 6F ) with vertically
increasing values. The contours (horizons) extracted from this
RGT map are no longer circular, and all accurately follow
seismic reflections (Fig. 6G). Note that for the intermediate RGT
derivative computation in the constrained DNN, we did not
explicitly supervise it with a derivative map during the training.
Instead, we trained both DNNs with or without the block of
constraint layers using the same RGT labels. After training,
the constrained DNN automatically computes the intermediate
RGT derivative map so that an integration from which can yield
the final RGT map. Moreover, this derivative map could be
used as a byproduct to highlight unconformities and faults with
relative high values as denoted by the white arrows in Fig. 6E .
Vehicle trace analysis in DAS data. Another example is vehicle
trace analysis in 2D DAS data (Fig. 7A). The data S(x, t) were
acquired by a highly sensitive DAS array near an urban road
where vibrations due to vehicles and noise sources were recorded.
The lateral axis x of the data represents the DAS array direction,
and the vertical axis t denotes the time at which the vibrations
were received. The linear features (denoted by white arrows in
Fig. 7A) represent vehicle motions recorded by the DAS array.
The dips of the linear features indicate the speeds of the vehicles
when passing along the DAS array. The tasks of extracting the
linear traces and estimating their dips are complicated by heavy
noise, which was also recorded by the sensitive DAS array.

We present a deep-learning–based method with prior con-
straints implemented in its DNN architecture to automatically

analyze vehicle traces in noisy DAS data. The entire DNN
architecture (Fig. 7) contains a CNN block (CNN-1), followed
by a block of layers with prior constraints (included in the
red dashed box). The first CNN block (CNN-1) is a regular
Unet (87) trained to compute a line detection map F(x, t)
(Fig. 7B) from the input DAS data S(x, t) (Fig. 7A) in the
space–time domain. The CNN-1 block is able to detect the
vehicle traces (the long lines in Fig. 7B) within the input data
but also yields some noisy linear features (short segments). In
addition, obtaining the individual line instances (corresponding
to different vehicles) and estimating their dips (corresponding
to vehicle speeds) from such a line detection map remains
challenging.

We propose the addition of another block of constrained
layers, following the line detection, to solve the above problems.
This block consists of a Hough transform, another CNN
block (CNN-2), and an inverse Hough transform. The Hough
transform maps the line detection F(x, t) from the space–time
domain into the Hough domain HT (ρ, θ), where the vertical
axis represents the radius ρ and the lateral axis denotes the
angle θ . In this domain, we can easily filter out the unlikely
vertical lines with angles 89◦ ≤ θ ≤ 91◦ (corresponding to
slowly moving or static objects) by simply masking out the area
denoted by the red box in Fig. 7C . Perfect lines in the space–
time domain will be points in the Hough domain. However,
the image features in the original domain (Fig. 7B) are not
perfectly linear, resulting unfocused radiant patterns of features
in Fig. 7C . Therefore, another simplified Unet (CNN-2) is used
to compute better focused point features (Fig. 7D) in the Hough
domain, where we can easily locate the positions of five points
(ρi, θi), i = 1, 2, · · · , 5. These points are transformed back to
the original space–time domain to obtain five perfect lines in
Fig. 7E . The colors of the lines represent the vehicle speeds
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that are converted from the angles θi located in the Hough
domain. Three regression loss functions were constructed with
the outputs of the CNN-1 (Fig. 7B), CNN-2 (Fig. 7D), and
the final result (Fig. 7E), respectively, to jointly train the entire
network.

The Hough transform and its inverse transform are inner
components of the entire neural network and are implemented
as matrix–vector operations to enable gradient back propagation
during the training of the network. The matrices of Hough
transform and its inverse transform are predefined and contain
no training parameters. By implementing the transforms as
components of the network, the prior knowledge of “linear
vehicle traces” is successfully imposed as a hard constraint on
the network. Similar to the previous example of RGT estimation,
this constraint is imposed in both the training and inference steps
and the output is ensured to satisfy the prior constraint.

Feature Map Preconditioning. A more straightforward method
to integrate constraints into a network is to apply prior
knowledge-based preconditioning to the feature maps that are
calculated in the neural network layers, especially the decoder
layers near the output. Such preconditioning can be performed
using smoothing filters or any other operators to modify the
values in the feature maps and make them consistent with the
prior knowledge.

Fig. 8 shows an example of seismic clinoform segmentation by
using an encoder–decoder CNN architecture. The upper panels
in Fig. 8 show some feature maps calculated in the i−th layer of
a regular decoder:

fi(c; x, y), i = 1, 2, 3, 4, [6]

where c represents the number of feature maps calculated at the
i−th layer. From these sequentially computed feature maps, a
final clinoform segmentation result p(x, y) is obtained, as shown
in the upper right image in Fig. 8. The segmented clinoform
area (denoted in red) is mostly accurate but contains some
unreasonable holes and outliers, which are denoted by the white
arrows.

One important observation is that the feature maps of the
decoder layers strongly resemble the final output of clinoform
segmentation. Some noisy features corresponding to the output
holes and outliers can also be observed in the feature maps
fi(c; x, y), especially when i = 2, 3. Based on these observations,
we can apply structure-oriented smoothing 〈·〉s kernels to reshape
the feature maps, as follows:

〈 fi(c; x, y)〉s, i = 2, 3. [7]

This results in more continuous map features and the
suppression of noise, as shown in Lower panels in Fig. 8. Note
that we applied the smoothing to relatively small-scale feature
maps to lower the computational cost. The idea to apply such
smoothing was based on the prior knowledge that the spatial
extension of the clinoform should be continuously aligned with
seismic reflections. Therefore, we could use seismic structure
information to design structure-oriented and spatially varying
convolutional kernels to enhance the feature maps to yield a
more reasonable clinoform segmentation result without holes or
outliers (Lower Right image in Fig. 8).

We have provided some simple examples to illustrate the
strategy of integrating prior constraints into networks by
designing custom layers and applying feature preconditioning,
which typically does not include any training parameters. This
is the most effective strategy to impose prior constraints that are
guaranteed to be satisfied during the inference step. However,
implementing prior constraints (e.g., complex physical processes
or operators) in the network is not straightforward, and related
work in geophysics has been rarely published. More research on
this type of strategy is encouraged and required in the geophysics
field.

Integrating Constraints into Loss Functions

Imposing prior constraints through loss functions is similar to
implementing regularization terms in the objective functions
for geophysical inversion problems. It has been widely studied,

Input seismic: 

Conv1 1+ReLU+Dropout 

Bilinear upsampling layer
Conv3 3+ReLU+Dropout

Output layer (Softmax+Argmax)

Output:

Encoder

Decoder with feature preconditioning

Regular decoder

Output:

Structure-oriented smoothing

Prediction with 
holes and outliers

Clean and complete 
prediction

Fig. 8. Example of imposing constraints on a DNN by applying preconditioning (Lower-Right branch) to feature maps calculated in the neural network layers,
especially in the decoder layers near the output. The preconditioning here is applying structure-oriented smoothing to the feature maps, which is helpful to fill
holes and eliminate outliers that are apparent in the seismic clinoform segmentation (Upper-Right image) without feature preconditioning.
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especially in semisupervised and unsupervised learning, and
physics-informed neural networks (PINNs).

SemisupervisedandUnsupervised Learning. The lack of labeled
training datasets is a common challenge for applying deep
learning to solve most geoscience problems. Semisupervised or
unsupervised learning is a potential way to address this challenge
by employing unsupervised loss functions to enable the use of
unlabeled datasets and prior constraints for training a DNN.

SI Appendix, Fig. S2 shows a simple framework of semisu-
pervised learning with supervised (Ls) and unsupervised (Lu)
loss functions that are jointly used to optimize the network
parameters. The supervised loss is typically built on only a
small set of labeled data. The unsupervised loss Lu integrates
the large amount of unlabeled data into the training process
based on prior knowledge or a consistency constraint of the
predictions, which is essential for training a better generalized
network model. When no labels are available for supervision,
the supervised loss (SI Appendix, Fig. S2) is missing, which leads
to an unsupervised learning fashion. Various semisupervised and
unsupervised learning strategies (88, 89) have been proposed,
which typically differ in the choice of the unsupervised loss
functions. A detailed discussion of semisupervised/unsupervised
learning and how to implement unsupervised loss is provided in
SI Appendix.

Semisupervised learning has been widely used to solve geophys-
ical problems (49, 58, 90–94). Based on a similar idea, physics-
guided and data-driven hybrid training schemes (95–97) have
been proposed to improve the robustness and generalizability
of deep learning methods for geophysical inversion. In these
schemes, physical guidance is introduced into the training step
by defining the unsupervised loss Lu based on geophysical
laws. However, they differ from the PINNS discussed below
in that they do not utilize automatic differentiation (98) to
calculate the derivatives involved in the loss. Unsupervised
learning can discover hidden patterns in unlabeled data and
has also been used for various tasks including seismic facies
classification (50, 99, 100), seismic signal or waveform classifi-

cation (11, 101–103), lithology classification (104–106), seismic
migration (37, 39), and inversion (107, 108).

PINNS. Another representative approach to impose prior in-
formation or constraints on a neural network through loss
functions is to build PINNs and train them with physics-
informed loss functions that are constructed based on governing
physical laws (e.g., partial differential equations (PDE)s). By
minimizing physics-informed loss functions, PINNs can be
trained to estimate results satisfying the governing physical
laws. Although the trained networks are typically ignorant of
the underlying physics, they can infer the solution space of
complex governing physical equations owing to their capability
of universal approximation and high expressivity (109, 110).
PINNs can solve both forward and inverse problems involving
PDEs and, therefore, have emerged as a hot topic in machine
learning for scientific computing (111, 112). PINNs can be
constructed with various network architectures (112), such
as fully connected (109–111, 113), recurrent (114–117), and
convolutional (118–121) neural networks.

The upper panels of Fig. 9 show a simple PINN that is
implemented with the architecture of fully connected neural
network. This PINN framework consists of a first part of a
common neural network and a second physics-informed part.
Given the time t and space coordinates x, the network F(θ)
is trained to predict u(x, t) = F(x, t; θ) that satisfies both
measured data and some physical equations by minimizing a
hybrid loss function as follows:

arg min
θ
ω1Ldata(x, t; θ) + ω2LPDE(x, t; θ) [8]

+ ω3LBC(x, t; θ) + ω4LIC(x, t; θ). [9]

In the physics-informed part (within the dashed red box in
Fig. 9), Ox and Ot represent physical operators applied to the
prediction u(x, t) regarding the spatial coordinates x and time
t, respectively. In PDEs, such operators are spatial and temporal
derivatives scaled by predefined prior physical parameters (not

Predicted wavefield Known velocity model

Fig. 9. A simple framework of physics-informed neural network (PINN) (Upper panels) consists of a trainable common neural networkF(x, t; �) and a physics-
informed part without training parameters. Such a PINN can be employed for geophysical forward modeling problems (e.g., seismic wavefield simulation in
Lower panels).
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trained). In PINNs, the derivatives are computed by automatic
differentiation (98) which provides an accurate way to compute
derivatives and avoids truncation or round-off errors appearing
in numerical differentiation. I represents an identity operator,
and the data loss Ldata is defined based on the similarity or
difference between the prediction u(x, t) and the data measured
at some specific times and spatial locations. The loss LPDE is the
residual of the governing PDE that is defined by a combination
of operations (Ox and Ot ) on the prediction u(x, t). The loss
functions LBC and LIC enforce the prior boundary and initial
conditions of the prediction, respectively.

The three physics-informed loss functions LPDE, LBC, and
LIC incorporate the constraints of prior governing physical
equations, boundary conditions, and initial conditions into the
training process and make sure the prediction or solution satisfies
the prior constraints. We can train the PINN by solely using the
physics-informed loss functions without any labeled data, which
can be actually considered as an unsupervised training strategy.
If some measured data or carefully simulated data are available,
we can use them to supervise the training process by through the
data loss Ldata as well as the physics-informed losses, which can
then be considered as a semisupervised training strategy. Such
labeled data, although are typically limited, are helpful to speed
up the convergence of the training process.

PINNs have been recently explored for solving geophysical
forward modeling (31, 32, 34, 59, 122–125) and inversion
(28, 47, 126–128), which involve intensive work on PDEs.
Taking seismic modeling and inversion as an example, we
can construct a basic framework for PINN-based geophysical
forward modeling (Lower panels in Fig. 9) and inversion. In
the forward modeling, a neural network (mostly constructed as
a fully connected neural network) is trained to approximate a
function F(x, t,�) that can directly and continuously predict
the wavefield ũ(x, t) at an arbitrary time t and spatial position x.
Based on the seismic wave equation, a known velocity modelm(x)
is used together with the predicted wavefield ũ(x, t) to construct
a physics-based loss functionLphy(ũ,m) for training the network
until the wave equation is fitted or the loss minimization
is converged. In the PINN-based inversion, another neural
network F(x,�) can be trained to directly infer a velocity
model m̃(x) that minimizes a loss function Lphy(u, m̃) defined
under the governing wave equation. In this inversion process,
a forward modeling process is typically required to simulate
the wave propagation in the subsurface to formulate the loss
function, similar to what is done in traditional inversion schemes.
Therefore, a pretrained forward modeling PINN is typically
employed to simulate the wavefield data u, which is in turn
used to construct the loss Lphy(u, m̃) for training the PINN of
inversion, as discussed in ref. 47 and 128. Considering that the
forward modeling process is always coupled with the inversion,
some authors (27, 35) suggested to jointly train the two PINNs
for both forward modeling and inversion by linking the two
networks via a common loss function. In this case, gradients
are simultaneously back-propagated to both PINNs for updating
their parameters during the training process.

In summary, PINNs provide another reasonable method to
impose prior constraints on neural networks by constructing
physics-informed loss functions based on physical equations to
train the networks. It has been demonstrated in many applications
that PINNs can effectively learn the solutions of the governing
equations in a physics-informed manner with limited or even
no labeled data. PINNs show some significant advantages over
traditional methods for solving PDE problems. First, a PINN is
a mesh-free algorithm that is able to avoid truncation and round-

off errors owing to the grid-based discretization and is flexible to
solve problems in arbitrary complex-geometry domains. Second,
PINNs are able to directly solve nonlinear and complex problems
without the need of committing to any assumptions, lineariza-
tion, simplification, or local time-stepping (109), which are
typically required by traditional solvers. Finally, the same PINN
framework can be used to jointly solve both forward and inverse
problems (112). However, there remain limitations in PINN-
based solutions to geophysical forward modeling and inversion.
First, training a PINN is quite tricky and computationally costly
(it can be more expensive than traditional solvers), especially for
predicting complex geophysical fields and earth models. Second,
a PINN, pretrained for a certain PDE, can be seldom adapted or
generalized to the variation of parameter settings (e.g., physical
variables of the equation, initial and boundary conditions) for
the same PDE. Third, forward modeling and inverse mapping
functions, approximated by neural networks in PINNs, tend to
make smooth predictions and therefore often seldom recover
details or high-frequency features in the modeling and reversion
results.

Conclusions

Most types of DNNs have been intensively employed, especially
in the last 5 y, for dealing with various types of geophysics tasks
that involve extracting and picking key features, clustering, and
classification, making predictions, forward simulation, and inver-
sion for subsurface properties. DNNs have shown promising per-
formance in several geophysical applications with high efficiency
and accuracy but still face problems of weak interpretability,
physical inconsistency, and poor generalizability in field appli-
cations. These problems of DNNs may be more obvious in
geophysics than in many other areas because the lack of labeled
training datasets and diverse inference datasets are substantially
more serious in geophysics. In addition to continuing leveraging
the latest deep learning techniques and properly reformulating
geophysical problems in better deep learning fashions, future
research on DNNs for geophysical problems should focus on
integrating domain knowledge into DNNs to address the above
problems and obtain better constrained DNN models.

We presented and demonstrated three general strategies to
impose prior constraints on DNNs. The first one pertains to the
training datasets and input data fed into the DNNs. Through
geological and geophysical forward simulation followed by data
augmentation, one can generate numerous and diverse synthetic
training datasets, which directly solves the problem of missing
labeled datasets and implicitly embeds domain knowledge into
DNNs by using the simulated data to train them. By properly
encoding prior knowledge as input channels (vectors or tensors),
one can directly integrate constraints and, more importantly,
introduce real-time human interaction or control into DNNs in
the reference step. The second strategy is to construct specialized
DNN architectures with custom layers that are designed based
on physical operators without trainable parameters. As inner
components of the DNN, these custom layers manipulate
feature maps of the network (in both the training and inferring
steps) to ensure that the output conforms to prior constraints.
The third strategy is to integrate prior constraints into loss
functions for training the DNNs, which is more flexible and
straightforward to implement than the other two strategies. The
second strategy imposes hard constraints on DNNs while the
other two impose soft constraints, and all three are helpful
to improve the generalizability, interpretability, and physical
consistence of DNN models.
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We believe that the successful application of DNNs to
geophysical problems will require substantially more research
on these three strategies. Research on the second strategy may
be more challenging but is desirable. In addition, we expect
research efforts to be made on topics including, but not limited
to, building large-scale and diverse benchmark datasets (such
as the SEG Advanced Modeling AI project), federated learning
and active learning to fully use datasets onsite, dealing with the
limitation of memory in field examples with high dimensions
and large sizes, training a general large DNN model that can be
transferred to various specific tasks in geophysics, and properly
and completely utilizing or merging data and knowledge from
multiple sources and modalities.
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