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S U M M A R Y
Fault detection in a seismic image is a key step of structural interpretation. Structure-oriented
smoothing with edge-preserving removes noise while enhancing seismic structures and sharp-
ening structural edges in a seismic image, which, therefore, facilitates and accelerates the
seismic structural interpretation. Estimating seismic normal vectors or reflection slopes is a
basic step for many other seismic data processing tasks. All the three seismic image processing
tasks are related to each other as they all involve the analysis of seismic structural features.
In conventional seismic image processing schemes, however, these three tasks are often in-
dependently performed by different algorithms and challenges remain in each of them. We
propose to simultaneously perform all the three tasks by using a single convolutional neural
network (CNN). To train the network, we automatically create thousands of 3-D noisy syn-
thetic seismic images and corresponding ground truth of fault images, clean seismic images
and seismic normal vectors. Although trained with only the synthetic data sets, the network
automatically learns to accurately perform all the three image processing tasks in a general
seismic image. Multiple field examples show that the network is significantly superior to the
conventional methods in all the three tasks of computing a more accurate and sharper fault
detection, a smoothed seismic volume with better enhanced structures and structural edges,
and more accurate seismic normal vectors or reflection slopes. Using a Titan Xp GPU, the
training processing takes about 8 hr and the trained model takes only half a second to process
a seismic volume with 128 × 128 × 128 image samples.
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1 I N T RO D U C T I O N

A 3-D seismic image (like the one in Fig. 1a) contains rich structural
features of the subsurface. Seismic image processes often involve
extracting and enhancing the seismic structure features for inter-
preting the subsurface. The most common seismic image processing
tasks may include (1) calculating seismic attributes to detect faults
and fractures (Fig. 1b), (2) smoothing the seismic image to remove
noise while enhancing structures and sharpening structural edges
(Fig. 1c) and (3) estimating a seismic normal vector field (illustrated
as spatially oriented ellipsoids in Fig. 1d) to measure the local orien-
tations of the folding structures (reflections) apparent in the seismic
image. Although numerous methods have been proposed for all the
individual seismic image processing tasks, challenges still remain
in each of them.

Faults are often recognized as lateral reflection discontinuities in
a seismic image. Based on this observation, numerous attributes in-
cluding semblance (Marfurt et al. 1998), coherency (Marfurt et al.
1999; Li & Lu 2014; Karimi et al. 2015), variance (Van Bem-
mel & Pepper 2000; Randen et al. 2001), curvature (Roberts 2001;
Al-Dossary & Marfurt 2006; Di & Gao 2016) and fault likeli-
hood (Hale 2013; Wu & Hale 2016) are proposed to detect faults
by highlighting the reflection discontinuities in a seismic image. In
calculating most of these attributes (e.g. Gersztenkorn & Marfurt
1999; Marfurt et al. 1999; Hale 2009b, 2013; Karimi et al. 2015),
reflection slopes are first estimated from the seismic image and
then used to measure reflection discontinuity along the reflection
orientations, which is helpful to remove artefacts due to folding
structures. These attributes, based on measuring reflection discon-
tinuities, can be sensitive to noise and stratigraphic features that are
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(b)

Figure 1. From an input 3-D seismic amplitude volume (a), we simultaneously detect faults (b), enhance the seismic reflections with edge-preserving (c) and
estimate the local reflection orientations [illustrated as spatially oriented ellipsoids in (d)] by using a single CNN.

unrelated to faults but are also apparent as discontinuities within a
seismic image. Therefore, some extra processing such as ant track-
ing (Pedersen et al. 2002, 2003) and optimal surface voting (Wu
& Fomel 2018a) are required to further enhance the fault features
while suppressing the noisy features in a fault attribute image.

Structure-oriented smoothing with edge-preserving is a widely
used processing in either common images (Weickert 1997, 1998,
2001) or seismic images (Fehmers & Höcker 2003; Hale 2009b;
Liu et al. 2010; Wu & Guo 2019) to enhance structural features
while sharpening structurally meaningful edges in an input image.
By removing noise and enhancing structures in a seismic image, this
image processing is helpful to facilitate seismic structural (Fehmers
& Höcker 2003) and stratigraphic (Wu & Guo 2019) interpreta-
tion. The structure-oriented smoothing with edge-preserving, how-
ever, requires first estimating structural orientations and detecting
edges within the input image. The accuracy of smoothing and edge-
preserving highly depends on the accurate estimation of structural

orientations and edges, each of which can be a challenging task in
practice.

Estimating normal vectors or slopes of seismic reflections is a
basic seismic image processing step for many other geophysical
tasks including calculating slope-guided attributes (Gersztenkorn
& Marfurt 1999; Marfurt et al. 1999; Hale 2009b, 2013), structure-
oriented smoothing (Fehmers & Höcker 2003; Hale 2009b; Wu &
Guo 2019), horizon picking (Lomask et al. 2006; Fomel 2010; Wu &
Fomel 2018b; Di et al. 2018), structure-guided interpolation (Hale
2009a) and regularization (Clapp et al. 2004; Wu 2017). Multiple
methods including structure tensors (Bakker 2002; Hale 2009b),
plane wave destruction (Fomel 2002), coherence scanning (Marfurt
2006), and directional structure tensors (Wu & Janson 2017) have
been proposed to estimate reflection slopes or orientations from
a seismic image. As discussed by Wu & Hale (2015), all these
methods perform well in estimating orientations for structures with
only one locally dominant orientation but yield inaccurately smooth
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2. The workflow of creating 3-D synthetic training data sets. We first generate a horizontal reflectivity model (a) with a sequence of random values. We
then sequentially add folding (b) and faulting (c) to the reflectivity model. We finally convolve the reflectivity model with a Ricker wavelet to obtain a clean
seismic image (d) and add some random noise to obtain a noisy image (e). At the same time of generating the seismic image, we record the ground truth of the
fault positions (e) and the three components (f–h) of the seismic normal vectors.

orientation estimation near structural edges where multiple struc-
tures meet. In order to solve this problem, some authors (Brox
et al. 2006; Wu & Hale 2015) propose to construct non-linear struc-
ture tensors to more accurately estimate discontinuous orientations.
Constructing the nonlinear structure tensors, however, involves
the other two processes of edge detection and edge-preserving
smoothing.

With successful applications in natural image processing tasks
of classification (Krizhevsky et al. 2012; Zeiler & Fergus 2014;
He et al. 2016), segmentation (Ronneberger et al. 2015; Badri-
narayanan et al. 2017), object detection (Girshick et al. 2014; Ren
et al. 2015; He et al. 2017) and so on, the machine learning meth-
ods have been recently introduced into seismic data processing tasks
for seismic interpretation (Wu et al. 2019, 2019; Shi et al. 2019;
Pham et al. 2019), inversion (Yang & Ma 2019; Li et al. 2019)
and denoising (Yu et al. 2018; Zhu et al. 2018; Wang & Nealon
2019). As a subfield of machine learning, multitask learning (MTL,
Caruana 1997; Argyriou et al. 2007; Ruder 2017) is proposed to si-
multaneously solve multiple tasks that are related to each other. By
exploiting commonalities and differences across the multiple tasks,
learning multiple related tasks from data simultaneously improves
efficiency and prediction accuracy compared to learning these tasks
individually (Evgeniou & Pontil 2004). MTL improves the gener-
alization of the network by sharing representation and knowledge
when learning multiple tasks in parallel. The representation and
knowledge learned for each task can help other tasks be better
learned (Caruana 1997). In addition, by sharing the training sam-
ples of multiple related tasks, MTL is helpful to solve the problem of
lacking samples in each task (Caruana 1997; Zhang & Yang 2017).
In this paper, we design a MTL network to simultaneously solve

the above three seismic image processing tasks of detecting faults,
structure-oriented smoothing with edge-preserving and estimating
reflection orientations.

As discussed above, the three image processing tasks are coupled
with each other and they all involve the analysis of seismic structural
features. In conventional methods, however, the three tasks are inde-
pendently performed by different algorithms, each of which needs to
be carefully designed. Performing one processing typically requires
accurate results precomputed from the other processes, which actu-
ally limits the performance of each processing in the conventional
methods. Based on these observations, we solve the three seismic
image processing tasks at the same time by taking the advantage of
the similarities between the tasks. Specifically, we design a single
convolutional neural network (CNN) to simultaneously perform all
the three image processing tasks. This CNN consists of a feature
extraction network followed by a set of three prediction networks.
The feature extraction is implemented by using a simplified U-net
architecture (Ronneberger et al. 2015; Wu et al. 2019), which ef-
ficiently computes multiscale structural features that are useful for
all the three image processing tasks. The prediction part is imple-
mented by three sets of residual blocks, which take the same output
features of the U-net as inputs and make three predictions of a fault
image, a smoothed image with enhanced structures and sharpen
edges, and a seismic normal vector field. To train the network, we
automatically generate noisy synthetic seismic images and the cor-
responding ground truth of fault positions, clean seismic images
and seismic normal vectors. Although trained with only synthetic
data sets, the network works well to perform the three image pro-
cessing tasks in field data sets that are acquired at totally different
surveys.
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2 T R A I N I N G DATA S E T S

Training and validating a CNN model often requires a large amount
of images and corresponding labels. In training a CNN to detect
faults, enhance a seismic image and estimate seismic reflection
orientations, we need a lot of 3-D noisy seismic amplitude volumes
as inputs and the corresponding target volumes of fault labels, clean
seismic amplitudes and seismic normal vectors. It might not be
difficult to obtain a lot of input seismic amplitude volumes by extract
subvolumes from large field seismic data sets and apply various
types of data augmentation to the extracted volumes. However, it
is impossible to fully label all the faults within the field seismic
volumes or to obtain the corresponding clean seismic volumes and
accurate reflection slopes. To solve this problem, we automatically
create a lot of synthetic data sets to train and validate our CNN
model.

Fig. 2 shows the workflow (Wu et al. 2019) of creating synthetic
seismic amplitude volumes and the corresponding label volumes.
In this workflow, we start with an initially flat reflectivity model
(Fig. 2a), which is created by horizontally extending a 1-D trace of
random reflectivity values. We then add a combination of folding
and dipping structures (Fig. 2b) in this reflectivity model. We fur-
ther add faulting to obtain a folded and faulted reflectivity model
(Fig. 2c). We finally convolve the reflectivity model with a Ricker
wavelet to simulate a synthetic seismic volume with clean ampli-
tude values shown in Fig. 2(d). A noisy seismic amplitude volume
in Fig. 2(e) is further obtained by add some random noise. Note
that we apply the convolution after the faulting because the con-
volution is helpful to blur the sharp faults (Fig. 2c) and therefore
make them more realistic (Fig. 2d). In addition, the convolution
is applied in directions perpendicular to the reflectivity structures
as discussed by Wu et al. (2019). At the same time of creating the
folding and faulting structures within the reflectivity model, we also
record the fault positions (overlaid with the noisy seismic volume
in Fig. 2e) and the three components (Figs 2f–h) of the normal
vector field that defines the folding structures in the 3-D volume.
The normal vectors are unit vectors, which are pointing downward
(with the positive vertical component u1(x, y, z) > 0 as shown in
Fig. 2f) and perpendicular to the folding structures everywhere in
the 3-D volume. In training our deep CNN (Fig. 3), the input is
a noisy seismic amplitude volume (Fig. 2e), the expected outputs
include a fault image with ones at fault positions and zeros else-
where (Fig. 2e), a clean seismic amplitude volume (Fig. 2d), and
three components(Figs 2f–h) of normal vector field. By using the
workflow, we automatically created 100 sets of 3-D volumes, each
volume contains 128 × 128 × 128 samples. We further apply data
augmentation to these 100 sets of volumes and obtain a lot more
training data sets.

2.1 Data augmentation

All the tasks of detecting faults, enhancing the seismic amplitude
volume and estimate local structural orientations involve only lo-
cal image processing within local windows. This means that we do
not need the whole large volumes but only small cubes of training
data sets to train the network for these three local image processing
tasks. Therefore, the first type of data augmentation is simply to ex-
tract overlapping subvolumes [with 64 (vertical) × 56 (inline) × 56
(crossline) samples] from the automatically created larger train-
ing data sets. We choose vertically elongated subvolumes because
faults often appear more vertical than horizontal within a seismic
amplitude volume.

The second type of data augmentation is to rotate the extracted
subvolumes around the vertical time or depth axis. To avoid interpo-
lation or artefacts near boundaries, we rotate a volume by only three
options of 90◦, 180◦ and 270◦. If we rotate an input seismic volume
by θ , we simply apply the same rotation to the corresponding fault
volume and clean seismic volume to make them consistent with
the input seismic volume. For the normal vector field, however, we
need to first transform the vector field by applying a rotation matrix
(defined by θ ) as follows:⎡
⎢⎢⎣

ũ3(x, y, z)

ũ2(x, y, z)

ũ1(x, y, z)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

cos θ − sin θ 0

sin θ cos θ 0

0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

u3(x, y, z)

u2(x, y, z)

u1(x, y, z)

⎤
⎥⎥⎦ , (1)

where u1(x, y, z), u2(x, y, z) and u3(x, y, z), respectively, are the
vertical, inline and crossline components of the original normal
vector field, as shown in Figs 2(f)–(h). After the transformation, we
then rotate each volume of ũ1(x, y, z), ũ2(x, y, z) and ũ3(x, y, z)
to make them consistent with the rotated input seismic volume.
By applying the two types of data augmentation, we significantly
increase the diversity of the data sets and totally obtain 9000 sets
of data sets. We use 90 per cent of the data sets for training and the
rest for validation.

3 S E I S M I C I M A G E P RO C E S S I N G B Y
C N N

All the three seismic image processing tasks of detecting faults,
enhancing the seismic image, and estimating seismic structural ori-
entations involve the analysis of geometric features apparent in a
3-D seismic image. In calculating an attribute for fault detection, we
often take into account the reflection orientations or slopes to com-
pute structure-oriented or slope-guided coherence (Gersztenkorn
& Marfurt 1999; Karimi et al. 2015) or semblance (Marfurt et al.
1999; Hale 2009b, 2013). In enhancing a seismic image, we ex-
pect to smooth the image along seismic structural orientations and
preserve the discontinuities near faults (Fehmers & Höcker 2003;
Hale 2009b; Wu & Guo 2019), which requires first estimating struc-
ture orientations and edges. Estimating seismic structural orienta-
tions (Hale 2009b; Wu & Janson 2017) is especially a direct analysis
of the seismic geometric features. Therefore, the three image pro-
cessing tasks are coupled with each other and all involve the analysis
of seismic structures. Based on these observations, we consider to
perform all the three tasks by using a MTL CNN.

3.1 CNN architecture

Fig. 3 shows the CNN that we use for simultaneously perform the
three image processing tasks. With an input noisy seismic amplitude
volume on the left, the CNN simultaneously computes three outputs
(on the right) of a fault volume, a smoothed seismic amplitude
volume with enhanced reflections and sharpen faults, and a normal
vector field with three components. The first part of shared layers (on
the left of the dashed black line in Fig. 3) forms an encoder-decoder
network which is simplified from the original U-net (Ronneberger
et al. 2015) by reducing the number of convolutional layers and the
number of features at each layer. This simplified U-net has been
successfully applied to the 3-D fault segmentation (Wu et al. 2019),
where details of the network are discussed. With downsampling and
upsampling structures, this U-net provides an effective way to not
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Figure 3. A deep convolutional neural network to simultaneously detect faults, compute a smoothed image with edge-preserving, and estimate seismic normal
vectors from an input seismic image.

Figure 4. The architecture of a residual block.

only save GPU memory and computational costs but also compute
seismic structural features in multiple scales.

The output 16 features of the U-net are further used as the shared
inputs for the second part of prediction network (on the right of
the dashed black line in Fig. 3), which contains three separate sets
of residual blocks (brown blocks in Fig. 3) to compute three final
outputs as shown on the right-hand side of the network (Fig. 3). As
shown in Fig. 4, each residual block is designed as a skip connection
over two convolutional layers (each layer generates 16 features),
followed by batch normalization layers and non-linear activations
(ReLU). With the 16 input features, computed from the U-net, the
first set of two residual blocks computes the 1st final output of a
fault image.

The 16 U-net features and the 16 output features of the first set of
residual blocks are concatenated together as inputs for the second
set of two residual blocks to compute the 2nd final output, which
is a smoothed seismic amplitude volume with enhanced reflections
and sharpen fault discontinuities. Similar to conventional structure-
oriented smoothing with edge preserving (Fehmers & Höcker 2003;
Hale 2009b; Wu & Guo 2019), we include the 16 fault features
(outputs of the first set of residual blocks) in the input features
and expect them to help preserve the fault edges in calculating the
smoothed seismic volume. Before feeding these concatenated 32
feature maps into the residual blocks, we add an extra convolutional
layer (with 16 features) to make sure the number of input feature
maps is consistent with the number of features (16 features) defined
at each layer of the residual blocks, so that we can consistently add

the input features and output features at the end of the residual block
as shown in Fig. 4.

The 16 U-net features, together with the previously computed
outputs of the two sets of residual blocks, are all concatenated to-
gether as inputs for a convolutional layer (with 16 features) followed
by the third set of three residual blocks to compute the 3rd final out-
put, which is a seismic normal vector field with three components
u1(x, y, z) (vertical), u2(x, y, z) (inline) and u3(x, y, z) (crossline) cor-
responding three channels in the output. This is similar to estimate
discontinuous or multiple orientations by using non-linear struc-
ture tensors (Brox et al. 2006; Wu & Hale 2015), where structural
edges and non-linear smoothing with edge-preserving are used to
construct the non-linear tensors. Estimating seismic normal vector
field is a more challenging regression problem for a convolutional
network, we therefore add one more residual block than in calcu-
lating the other two outputs. The normal vector field and reflection
slopes p2(x, y, z) = − u2(x,y,z)

u1(x,y,z) (inline) and p3(x, y, z) = − u3(x,y,z)
u1(x,y,z)

(crossline) can be used to equivalently describe the 3-D local orien-
tations of reflections. However, we suggest to estimate the normal
vector field, instead of reflection slopes, because the output nor-
mal vectors are all normalized as unit vectors for both training and
prediction. On the other hand, the reflection slopes cannot be nor-
malized (normalized slopes will no longer be consistent with the
structures in the input seismic volume) and the range of the slopes
are various for different input seismic volumes, which makes the
slope estimation less stable than the normal vector field estimation
by using a CNN.

In designing this CNN architecture, we find that the fault seg-
mentation is an easier task for the CNN compared to the other two
tasks. We therefore first compute a fault segmentation with less con-
volutional layers and then compute a smoothed seismic image and a
seismic normal vector field with deeper convolutional layers. It has
been shown by Wu et al. (2019) that only the U-net (first part of this
CNN architecture) is good enough to perform fault segmentation
well. In this CNN architecture (Fig. 3), we still add two more resid-
ual blocks followed by the U-net to compute a fault segmentation
because we expect the output features of the U-net contain more
general features (not just fault features) that can be shared for the
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(a) (b) (c)

Figure 5. Three losses of the model for training (orange curves) and validation (blue curves) data sets.

Figure 6. Mean accuracy rate across all predictions for fault classifications
in the training (orange curve) and validation (blue curve) data sets.

other two tasks. In our experiments, estimating the seismic normal
vector field is the most challenging task (among the three tasks) for
the CNN. We therefore consider the seismic normal estimation as
the final output with the deepest layers. In addition, it is consistent
with using the non-linear structure tensors (Brox et al. 2006) to
estimate discontinuous orientations, where the structural edges are
first detected and an edge-preserving smoothing is applied for the
orientation estimation.

3.2 Loss functions

In training the network (Fig. 3) for predicting the three results of a
fault image, an enhanced seismic volume and a normal vector field,
we use three different loss functions. Fault detection is a classic
binary segmentation problem, where the binary cross-entropy loss
function is widely used. However, the regular cross-entropy loss
might not be suitable to measure the errors of fault segmentation,
where the number of fault samples (labelled by ones) and non-fault
samples (labelled by zeros) in a fault image are highly imbalanced
(more than 90 per cent of samples are zeros) as discussed by Wu
et al. (2019). We therefore use a balanced cross-entropy loss func-
tion as discussed by Xie & Tu (2015):

L f ault = −β

i=N∑
i=0

yi log(pi ) − (1 − β)
i=N∑
i=0

(1 − yi ) log(1 − pi ), (2)

where β =
∑i=N

i=0 (1−yi )
N represents the ratio between non-fault pixels

and the total image pixels while 1 − β denotes the ratio of fault
pixels.

Estimating a smoothed seismic volume is a classic regression
problem. We therefore use the following most common regression

loss function:

Lsmooth =
∑N

i=1(yi − y p
i )2

N
, (3)

which measures the mean square error (MSE) between the target
(yi) and predicted (y p

i ) seismic amplitude volumes.
In estimating a seismic normal vector field, the output has three

channels corresponding to the vertical, inline and crossline com-
ponents of the normal vectors. To measure the error between the
predicted and true normal vectors at each sample, we use the fol-
lowing normalized cosine similarity loss function:

Lnormal = 1

N

N∑
i=1

(
1 − 〈up

i , uy
i 〉√〈up

i , up
i 〉

)
, (4)

where up
i and uy

i represent the predicted and true normal vector
fields. The true normal vectors are unit vectors while the predicted
normals are not necessary unit vectors. We therefore normalize the
predicted normals to unit vectors at each sample and backpropagate
this normalization. To be consistent, we also normalize the predicted
normals when applying the trained CNN model to any test data set.

We train the network by using a combination of these three loss
functions. We notice that the gradients or errors measured by the
last cosine similarity loss function (eq. 4) are relatively smaller
than those of the other two loss functions. In addition, the gradients
need to be backpropagated more layers to update the network as
the seismic normal estimation is the final output with the deepest
layers as shown in Fig. 3. To be able to effectively backpropagate
the gradients measured by the cosine similarity loss function, we
amplify the gradients by the scale of 10 before the backpropagation.

3.3 Training and validation

We train the CNN by using 8100 sets of input seismic volumes
and the corresponding target volumes that are extracted from the
automatically generated synthetic data sets by using the workflow
shown in Fig. 2. The validation data set contains another 900 sets
of data sets, which are not included in the training data set. We
normalize both the input noisy seismic amplitude volumes and the
target clean amplitude volumes before the training and validation. In
this normalization, the input and target seismic amplitude volumes
are not independently normalized. Instead, each pair of the input
and target seismic volumes are subtracted by the same mean of
the input seismic volume and then divided by the same standard
deviation of the input seismic volume. In this way, we are able to
recover the seismic amplitude values by using only the mean and
standard deviation of the input seismic volume but without the need
of the mean or standard deviation of the true seismic volume which
are unknown in the prediction.

As the three seismic image processing tasks of detecting faults,
enhancing the seismic amplitude volume and estimating seismic
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(a) (b) (c) (d)
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Thinned fault likelihood

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 7. Top row: ground truth of (a) faults (overlaid with the input noisy seismic image), (b) the clean seismic image, (c) inline and (d) crossline slopes.
Middle row: (e) fault detection, (f) smoothed seismic image with edge-preserving, (g) inline and (h) crossline slopes are simultaneously computed from the
input noisy seismic image by using the proposed CNN (Fig. 3). Bottom row: conventional methods of (i) fault detection by calculating a TFL (thinned fault
likelihood) image, (j) smoothed image by structure-oriented smoothing, (k) inline and (l) crossline slopes estimated by structure tensors.

normal vectors are local image processing, we train the CNN by
using small sub-volumes with 64 × 56 × 56 samples, which sig-
nificantly increases the number and diversity of the training data
sets and greatly improves the training efficiency. Although trained
with small subvolumes, this CNN model can be applied to real seis-
mic volumes with different dimensions. The only limitation is that
each dimension needs to be divisible by 8 as we have three times
of downsampling (reduce the dimension of an input by half) and
upsampling (double the dimension of an input) included in the CNN
architecture.

We feed the 3-D noisy seismic volumes to the neural network in
batches and each batch contains 8 volumes, which consist of 2 orig-
inal seismic volumes and the same volumes rotated around the ver-
tical axis by 90◦, 180◦ and 270◦. We use the Adam method (Kingma
& Ba 2014) to optimize the network parameters and set the learning
rate to be 0.0001. We train the network with 25 epochs and all the
8100 training data sets are processed at each epoch. As shown in
Figs 5 and 6, all the three loss functions for both training (orange
curves) and validation (blue curves) converges to small values while
the fault classification accuracy gradually increases to 97 per cent
after 25 epochs.

To verify the CNN model trained with 25 epochs, we apply this
trained model to the synthetic seismic volume with 128 × 128 ×

128 samples (Fig. 7a), which was not included in the training data
sets. Figs 7(a)–(d) are the ground truth of the fault image (overlaid
with the noisy seismic volume), clean seismic volume, inline and
crossline slope volumes, respectively. By using the trained CNN
model, we simultaneously predict a fault probability image (Fig. 7e),
a clean seismic volume (Fig. 7f), inline (Fig. 7g) and crossline
(Fig. 7g) slope volumes. Using one GPU (Titan Xp), the CNN
took only half second to predict all the results shown in the middle
row of Fig. 7. All of the predictions match well with the ground
truth shown in the top row. Note that the CNN model actually
predicts a seismic normal vector field with three components u1(x,
y, z), u2(x, y, z) and u3(x, y, z). The inline (Fig. 7g) and crossline
(Fig. 7h) slopes are converted from the estimated normal vectors by
p2(x, y, z) = − u2(x,y,z)

u1(x,y,z) and p3(x, y, z) = − u3(x,y,z)
u1(x,y,z) . The motivation

of displaying the two slope volumes, instead of the three components
of the normal vector field, is simply to reduce the number of figures
in this paper.

In comparison, we also use conventional methods to perform the
three seismic image processing tasks as shown in the bottom row of
Fig. 7. Fig. 7(i) shows a TFL (thinned fault likelihood) image (Hale
2013; Wu & Hale 2016). Fig. 7(j) shows a smoothed seismic ampli-
tude volume computed by using the conventional anisotropic and
spatially varying diffusion (Hale 2009b; Wu & Guo 2019) guided by
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Figure 8. With an input seismic volume (a), the proposed CNN simultaneously computes a clean and sharp fault image (b), a smoothed seismic image (c)
with structures enhanced while noise removed (d), inline (e) and crossline (f) slopes. As a comparison, we use three conventional methods of fault likelihood
scanning (Hale 2013; Wu & Hale 2016), structure-oriented smoothing (Hale 2009b), and structure tensors (Hale 2009b), respectively, to compute a fault
likelihood image before (g) and after (h) thinning, a smoothed image (i) with noise removed (j), and inline (k) and crossline (l) slopes from the same seismic
image (a).

structural orientations and weighted by the fault attribute (Fig. 7i).
Figs 7(k) and (l) show the inline and crossline slopes estimated by us-
ing the conventional structure tensors (Hale 2009b). From the com-
parison, the CNN is significantly superior to the conventional meth-
ods in all the three image processing tasks because it can provide a
more accurate and sharper fault detection, a smoothed seismic vol-
ume with better enhanced reflections and better preserved faults, and
more accurate inline and crossline slopes with discontinuities better
preserved near faults. In addition, we are able to perform all the three
image processing tasks by using a single CNN, instead of carefully
designing a different algorithm for each task in the conventional
methods.

3.4 Applications

In addition to the validation in the synthetic examples (Fig. 7), we
further verify the same CNN model, trained with only synthetic
data set, on four field seismic volumes that are acquired at different
surveys. To be consistent with the synthetic training seismic vol-
umes, each of the field seismic volumes is subtracted by its mean
and then divided by its standard deviation to obtain a normalized
volume. This normalization modifies the seismic amplitude values
but does not change the seismic structure patterns (which depend
on amplitude variations). This means that this normalization does
not affect our image processing tasks that are based on analyzing
seismic structure patterns.
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Figure 9. With an input seismic image [background grey image in (a)], the proposed CNN simultaneously performs three image processing tasks of computing
a clean and sharp fault probability image (a), a smoothed seismic image (b) with enhanced reflections and faults while noise removed (c), and a seismic normal
vector field (d). As a comparison, we use three conventional methods of fault likelihood scanning (e), structure-oriented smoothing (f–g), and structure tensors
(h) to perform the corresponding three image processing tasks on the same input seismic image. The dashed yellow ellipse in (g) shows that the conventional
structural oriented smoothing method removes more meaningful structure features than our CNN-based method.
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Figure 10. With an input seismic image [background grey image in (a)], the proposed CNN simultaneously performs three image processing tasks of computing
a clean and sharp fault probability image (a), a smoothed seismic image (b) with enhanced reflections and faults while noise removed (c), and a seismic normal
vector field (d). As a comparison, we use three conventional methods of fault likelihood scanning (e), structure-oriented smoothing (f–g), and structure tensors
(h) to perform the corresponding three image processing tasks on the same input seismic image. The yellow arrows in (g) shows that the conventional smoothing
method removes more meaningful structure features than the CNN-based method.

Fig. 1 a shows a seismic amplitude volume (240 (vertical) × 400
(inline) × 592 (crossline) samples) that is acquired at the Campos
Basin, offshore Brazil. The reflections within the seismic volume
are heavily faulted due to the salt bodies at the bottom of the vol-
ume. With this input seismic volume, the proposed CNN simultane-
ously computes a fault probability image overlaid with the seismic

volume in Fig. 1(b), a smoothed seismic amplitude volume (Fig. 1c)
with enhanced reflections and sharpen faults, and seismic nor-
mal vectors, which are illustrated by the spatially oriented ellip-
soids in Fig. 1(d). In the output CNN fault probability image
(Fig. 1b), most of the faults are clearly and accurately labeled except
some subtle faults. The horizontal slice displays clear patterns of
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polygonal faults that may be associated with salt diapirs (Rowan
et al. 1999; Carruthers 2012). In the smoothed seismic amplitude
volume (Fig. 1c), the seismic reflections are more clear and faults
are sharper than those in the original seismic volume (Fig. 1a). The
green ellipsoids (Fig. 1d), oriented by the estimated seismic nor-
mal vectors, consistently align with reflections within the seismic
volume.

Fig. 8 shows another field example. With the input seismic image
(Fig. 8a), the proposed CNN simultaneously computes three outputs
of a fault probability image (Fig. 8b), a smoothed seismic amplitude
image (Fig. 8d), and a normal vector field, which are further used
to compute the inline (Fig. 8e) and crossline (Fig. 8f) slopes. In the
smoothed seismic volume, noise are removed (Fig. 8d) where all
the reflections and faults are significantly enhanced. In comparison,
we first compute a fault likelihood image before (Fig. 8g) and after
(Fig. 8h) thinning from the same input seismic image by using the
fault likelihood scanning method (Hale 2013; Wu & Hale 2016).
The fault likelihood images (Figs 8g and h) can detect most of
the faults, however, are more noisy than the CNN fault probability
image (Fig. 8b). We then compute a smoothed seismic amplitude im-
age (Fig. 8i) by using the structure-oriented smoothing (Hale 2009b)
guided by structural orientations and weighted by the thinned fault
likelihood image. This conventional smoothing method can also en-
hance structures and preserve faults, however, requires first estimat-
ing structural orientations and detecting faults. We further estimate
inline and (Fig. 8k) crossline (Fig. 8l) slopes from the same seismic
image by using structure tensors (Hale 2009b). These slopes show
similar feature patterns as in the slopes estimated by our CNN-
based method. However, our CNN method better preserves slope
discontinuities near the faults where the hanging wall and foot-wall
structures are differently oriented.

Fig. 9 shows the 3rd filed example, where again, our CNN method
simultaneously computes a fault probability image (Fig. 9a) with
clean and sharp fault features, a smoothed seismic volume (Fig. 9b)
with structural features enhanced while noise removed (Fig. 9c),
and a seismic normal vector field (Fig. 9d). On the other hand side,
by using the conventional methods, the computed fault likelihood
image (Fig. 9e) is more noisy. The conventional structure-oriented
smoothing removes noise but also removes more structural features
(highlighted by the dashed yellow ellipse in Fig. 9g) compared to our
CNN-based method. The conventional structure-tensor method and
our CNN-based method provide consistent estimations of seismic
normal vectors as illustrated by the green ellipsoids in Figs 9(h)
and (d). Note that the removed noise in both the CNN-based method
and the conventional structure-oriented smoothing is mostly random
noise. Attenuating coherent noise apparent in seismic images is
typically a more challenging task. However, the CNN-based method
could be a potential way to effectively remove coherent noise by
training the network with proper training data sets.

Fig. 10 shows the last example, where the input seismic ampli-
tude image (background grey image in Fig. 10a) is relatively more
noisy than the previous ones. Our CNN method still computes a
clean fault probability image (Fig. 10a), a properly smoothed seis-
mic image (Fig. 10b) with structural features enhanced while noise
effectively removed (Fig. 10c), and accurate seismic normal vectors
that are consistently aligned with the seismic reflections as shown in
Fig. 10(d). As a comparison, again, we use the conventional methods
to compute a thinned fault likelihood image (Fig. 10e), a smoothed
seismic image (Fig. 10f) with noise removed (Fig. 10f), and a seis-
mic normal vector field (Fig. 10g). We observe the fault features
in the thinned fault likelihood image are much more noisy than the
CNN fault probability image. The conventional structure-oriented

smoothing removes some useful structural features (highlighted by
yellow arrows in Fig. 10f) as well as noise.

In summary, although the CNN model is trained with only syn-
thetic data sets, it works well to perform all the three image pro-
cessing tasks of detecting faults, structure-oriented smoothing with
edge-preserving and estimating seismic normal vectors in 3-D field
seismic volumes that are acquired at totally different surveys. In ad-
dition, the seismic image processing using the trained CNN model
is highly efficient. By using one Titan Xp GPU, processing the seis-
mic volume (with 128 × 360 × 512 samples) in Fig. 9(a) takes
around 6 s to compute the three outputs of a fault probability im-
age (Fig. 9d), a smoothed seismic volume (Fig. 9b) and a seismic
normal vector field with three components.

4 C O N C LU S I O N S

We have proposed a MTL CNN to simultaneously perform three
seismic image processing tasks of detecting faults, structure-
oriented smoothing with edge preserving, and estimating seismic
local structure orientations (seismic normal vectors or reflection
slopes). All the three tasks involve the analysis of seismic structural
features and one depends on the others. Based on this observation,
we design a CNN including a shared encoder-decoder network of ex-
tracting common features followed by three branches of prediction
networks, which share the commonly extracted features and com-
pute three outputs of a fault image, a smoothed seismic image and
seismic normal vectors. All these three tasks involve only local im-
age processing, we therefore use small image cubes (64 × 56 × 56
samples) to more efficiently train the CNN, which is further used
to perform the image processing tasks on large image volumes. We
train the neural network by using only synthetic data sets, which are
all automatically generated by randomly adding folding, faulting
and noise. Although trained with only synthetic data sets, the neural
network can accurately perform all the three image processing tasks
on field seismic volumes that are acquired at totally different areas.
All the three tasks are based on the seismic structure patterns that
are characterized by seismic amplitude variations (not the absolute
amplitude values), which means that the normalization (subtracting
and dividing a constant value) applied to the seismic images does
not modify the structure patterns. This is an important reason why
our network, trained with only synthetic data sets, could be success-
fully applied to different field data sets which share similar structure
patterns with the training data sets and are consistently normalized
as the training data sets.
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