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Abstract

A 3D seismic image contains structural and stratigraphic features such as reflections, faults, and channels.
When smoothing such an image, we want to enhance all of these features so that they are easier to interpret.
Most smoothing methods aim to enhance reflections but may blur faults and channels in the image. A few meth-
ods smooth seismic reflections while preserving faults and channel boundaries. However, it has not well-dis-
cussed to smooth simultaneously along the seismic reflections and channels, which are linear features apparent
within dipping reflections. In addition, to interpret faults and channels, extra steps are required to compute
attributes or mappings of faults and channels from a seismic image. Such fault and channel attributes are often
sensitive to noise because they are typically computed as discontinuities of seismic reflections. In this paper, we
have developed methods to simultaneously enhance seismic reflections, faults, and channels while obtaining
mappings of the faults and channels. In these methods, we first estimate the orientations of the reflections,
faults, and channels directly in a seismic image. We then use the estimated orientations to control the smoothing
directions in an efficient iterative diffusion scheme to smooth a seismic image along the reflections and chan-
nels. In this iterative scheme, we also efficiently compute mappings of faults and channels, which are used to
control smoothing extents in the diffusion to stop smoothing across them. This diffusion scheme iteratively
smooths a seismic image along reflections and channels while updating the mappings of faults and channels.
By doing this, we will finally obtain an enhanced seismic image (with enhanced reflections and channels and
sharpened faults) and cleaned mappings of faults and channels (discontinuities related to noise are cleaned up).
We have examined the methods using 2D and 3D real seismic images.

Introduction
Seismic interpretation often includes extracting struc-

tural and stratigraphic features such as horizons, faults,
and channels from a seismic image (Wu and Hale, 2016b).
The seismic horizons can be directly extracted from a
seismic image by following reflections, which are domi-
nant linear (2D) or planar (3D) features in the seismic
image (Wu and Hale, 2015). The seismic faults and chan-
nels are recognized as the lateral discontinuities of reflec-
tions in a seismic image (Gersztenkorn andMarfurt, 1999;
Chopra and Marfurt, 2007). In a 3D seismic image, chan-
nels are also spatially apparent as linear features that are
aligned within dipping reflections (Wu, 2017). To extract
seismic faults and channels, we often need to compute an
extra attribute image from a seismic image so that the
faults and channels are the most prominent features in
the attribute image (Wu and Hale, 2016a; Wu, 2017).

In practice, such structural and stratigraphic features
may not be obvious to track in a seismic image because
of noise or limitations in seismic imaging methods.

Therefore, a helpful step before seismic interpretation
is to first enhance the structural and stratigraphic fea-
tures in the seismic image so that the reflections are
more continuous in areas away from faults and chan-
nels, the reflection discontinuities near faults and chan-
nels are more obvious, and the channels are spatially
more continuous along dipping horizons or reflections.
Some methods (e.g., Bakker et al., 1999; Fehmers and
Höcker, 2003; Lavialle et al., 2007; Hale, 2009, 2011;
Liu et al., 2010) have been proposed to enhance seismic
reflections while preserving reflection discontinuities
near faults and channel boundaries. To enhance the lin-
ear or planar reflections, most authors (Fehmers and
Höcker, 2003; Lavialle et al., 2007; Hale, 2009) construct
structure-oriented filters to smooth a seismic image
along reflections by using anisotropic diffusion (Weick-
ert, 1997, 1999). Some other authors construct structure-
oriented filters using the steered Kuwahara filter (Bak-
ker et al., 1999; AlBinHassan et al., 2006), plane-wave
prediction (Liu et al., 2010), and steered bilateral filter
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(Hale, 2011). To preserve reflection discontinuities near
faults, all the methods require computing some fault im-
age to stop the smoothing at the faults. To preserve com-
putational efficiency, some authors (Bakker et al., 1999;
Hale, 2009) do not update the fault image during the
smoothing. However, such a fault image is often sensitive
to noise, some other authors (Fehmers and Höcker,
2003; Lavialle et al., 2007; Liu et al., 2010; Hale, 2011)
therefore prefer to iteratively update the fault image to
obtain a more accurate detection of faults and to better
preserve faults during the smoothing.

Although structure-oriented smoothing methods have
been proposed to enhance seismic reflections while
preserving faults and channel boundaries, it is not dis-
cussed to simultaneously enhance or smooth along seis-
mic stratigraphic features such as channels. In addition,
the efficiency of the previous structure-oriented smooth-
ing methods can be further improved. In this paper, we
discuss fast cyclic explicit diffusion methods to simulta-
neously enhance reflections, faults, and channels in
a seismic image while computing enhanced images of
faults and channels. In the methods, we first estimate the
orientations of reflections, faults, and channels from a
seismic image. We also compute fault and channel map-
pings from the seismic image and apply fault- and chan-
nel-oriented smoothing to enhance the fault and channel
features in these mappings. We then use the orientations
of reflections and channels to control the smoothing di-
rections in an iterative diffusion scheme to smooth along
reflections and channels in the seismic image. The fault
and channel mappings are used to control the smoothing
extents in the diffusion scheme so that the smoothing is
performed along reflections and channels but not across
faults and channels. In the diffusion scheme, we itera-
tively update the fault and channel mappings together
with the seismic image. The finally updated fault and
channel imageswill display enhanced faults and channels,
whereas the finally updated seismic image will display en-
hanced reflections, channels, and sharpen discontinuities
near faults and channel boundaries. To accelerate the dif-
fusion, we use the fast explicit diffusion (FED) method
proposed by Grewenig et al. (2010) and Weickert et al.
(2016), which requires fewer iterations than the conven-
tional explicit diffusions schemes. We demonstrate the

proposed methods using 2D and 3D examples with many
faults and channels.

Structural and stratigraphic orientations
Several methods, such as the structure tensor (Van

Vliet and Verbeek, 1995; Weickert, 1997; Fehmers
and Höcker, 2003), coherence scanning (Marfurt, 2006),
plane-wave destruction (Fomel, 2002), and dynamic
image warping (Arias, 2016), have been proposed to es-
timate seismic reflection orientations or slopes. However,
the latter three methods are not applicable to estimate
orientations of seismic stratigraphic features such as
channels that are generally aligned within dipping reflec-
tions. In this paper, we use the structure tensormethod to
estimate orientations of structural features (reflections)
and stratigraphic features (channels).

Structure tensors
A structure tensor T at each seismic image sample

can be constructed as a smoothed outer product of
image gradient g∶T ¼ hgg⊤i, where h·i denotes the
smoothing for each element of the outer product or
structure tensor. This smoothing, often implemented
as a Gaussian filter, helps to construct structure tensors
with stable estimations of seismic structural and strati-
graphic orientations.

For each image sample in a 2D image, a structure ten-
sor T is a 2 × 2 symmetric positive-semidefinite matrix

T ¼ hgg⊤i ¼
� hg1g1ihg1g2i
hg1g2ihg2g2i

�
; (1)

where g ¼ ½g1g2� represent the 2D image gradients with
first derivatives computed in the vertical (g1) and hori-
zontal (g2) directions and h·i denotes the smoothing of
whatever is inside the angle brackets. As shown by
Fehmers and Höcker (2003), the seismic reflection ori-
entation at each image sample can be estimated from
the eigendecomposition of the structure tensor T at that
sample

T ¼ λuuu
⊤ þ λvvv

⊤; (2)

where λu and λv are the eigenvalues corresponding to
eigenvectors u and v of T. If we label the eigenvalues

λu ≥ λv ≥ 0, then the corresponding ei-
genvectors u will be perpendicular to
locally linear features (seismic reflec-
tions) in an image and the eigenvectors
v will be parallel to such features. Fig-
ure 1a shows a 2D seismic image, and
the cyan segments in Figure 1b represent
the eigenvectors v that are aligned with
the seismic reflections in the image.
Although we display the eigenvectors v

only at some image samples in Figure 1b,
we actually compute eigenvectors u and
v for all image samples from the eigende-
composition of 2D structure tensors.

Figure 1. (a) A 2D seismic image is displayed with the (b) eigenvectors v (the
cyan segments) of structure tensors.
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For each sample in a 3D image, a structure tensor T
is a 3 × 3 symmetric positive-semidefinite matrix

T ¼ hgg⊤i ¼
2
4 hg1g1ihg1g2ihg1g3i
hg1g2ihg2g2ihg2g3i
hg1g3ihg2g3ihg3g3i

3
5; (3)

where g1, g2, and g3 are the three components of an im-
age gradient vector g computed at a 3D image sample.
The eigendecomposition of such a 3D structure tensor
is as follows:

T ¼ λuuu
⊤ þ λvvv

⊤ þ λwww⊤; (4)

where λu, λv, and λw are the eigenvalues corresponding to
orthogonal eigenvectors u, v, and w, respectively. If we
label the eigenvalues λu ≥ λv ≥ λw ≥ 0, then the corre-
sponding eigenvectors u will be parallel to directions in
which the image features vary most significantly, whereas
the eigenvectorsw will be parallel to directions in which
the image features vary the least significantly. In a 3D
seismic image, the eigenvectors u are locally perpen-
dicular to seismic reflections, whereas the eigenvectors
w are locally parallel to seismic stratigraphic features
(channels) that are aligned within the reflections (Hale,
2009). The eigenvectors u are orthogonal to seismic re-
flections and stratigraphic features. Figure 2 displays the
three eigenvectors on a stratigraphic surface that can be
extracted from a 3D seismic image by following seismic
reflections. As shown in Figure 2, the eigenvector u is
normal to the surface, whereas eigenvectors v and w

lie within a local plane of the surface and are laterally
perpendicular and parallel to the channel, respectively.

With the eigenvectors derived from 2D or 3D struc-
ture tensors, we are able to design anisotropic filters
that smooth along seismic structural and stratigraphic
features. In this paper, we construct such a structure-
and stratigraphy-oriented smoothing filter with aniso-
tropic diffusion (e.g., Weickert, 1997, 1999; Ma and
Plonka, 2007; Plonka and Ma, 2008). Such anisotropic
diffusion filters are based on a physical heat diffusion
process, but the diffusion is steered by a tensor field that
may be constructed from the eigenvectors of structure
tensors. Some authors (Fehmers and Höcker, 2003; Hale,
2009) have applied such anisotropic diffusion filters
to enhance seismic reflections while pre-
serving faults. However, these aniso-
tropic diffusion filters may blur seismic
stratigraphic features such as channels
by smoothing along seismic reflections.
Moreover, the fault images used to pre-
serve faults in these methods can be fur-
ther enhanced by applying approximate
fault-oriented smoothing to the images.
Figure 3a shows a smoothed image com-
puted by applying the structure-oriented
smoothing method, proposed by Hale
(2009), to the original seismic image in
Figure 1. We observe that this method

works pretty well to enhance the seismic reflections but
also remove the reflection discontinuities related to faults
as shown in the smoothed image (Figure 3a) and the in-
put-output difference image (Figure 3b). To preserve the
faults within the smoothed image, a fault attribute image
such as coherence is required as an extra input for the
method as discussed by Hale (2009). In addition, although
this method requires only 0.086 s to compute this 2D
smoothed image by using an eight-core computer, the
computational efficiency can still be significantly im-
proved.

In this paper, we will discuss anisotropic diffusion
filters to simultaneously enhance reflections, faults,
and channels in a seismic image and at the same time
compute enhanced mappings of faults and channels. We
solve the anisotropic diffusion using the FED method
proposed by Grewenig et al. (2010) and Weickert et al.
(2016), which is significantly more efficient than the pre-
vious structure-oriented filters (Fehmers and Höcker,
2003; Hale, 2009) used in seismic image smoothing.

Fast explicit diffusion
The anisotropic diffusion can be implemented explic-

itly using an iterative scheme (Weickert, 1999; Fehmers
and Höcker, 2003) or implicitly by solving a large linear
system (Hale, 2009). In this paper, we use the FED
method (Grewenig et al., 2010; Weickert et al., 2016) to
more efficiently solve the anisotropic diffusion filters.
Then, we will explain the FED method using a simple
1D homogeneous diffusion problem.

Figure 2. Eigenvectors u, v, andw of a 3D structure tensor are
displayed on a stratigraphic surface with a channel. The vector
u is orthogonal to the surface and the channel. The vectors v

and w lie within the local plane of the surface and are laterally
perpendicular and parallel to the channel, respectively.

Figure 3. (a) Smoothed image computed by Hale’s method (computational
time: 0.086 s). (b) Input-output difference.
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1D linear diffusion
A 1D homogeneous diffusion of a function gðx; tÞ can

be expressed as

∂gðx; tÞ
∂t

¼ ∂
∂x

∂gðx; tÞ
∂x

: (5)

Let h denote the spatial mesh size and τ (τ > 0) denote
the time step size, and then the discretization of the
above equation at a spatial-time-grid point ðxi; tkÞ with
xi :¼ ði − ð1∕2ÞÞh and tk :¼ kτ can be formulated as

gðxi; tkþ1Þ ¼ ðI þ τΔÞgðxi; tkÞ; (6)

where I is the identity operator and Δ represents the
discrete second derivative operator.

Iteratively solving the above diffusion equation 6 with
gi is equivalent in applying a Gaussian smoothing filter to
the discretized sequence gi (Weickert, 1997; Grewenig
et al., 2010). This diffusion process with stop time tk ¼
σ2∕2 yields the comparable smoothing extent of a Gaus-
sian smoothing filter with the half-width σ (Weickert,
1998). Because the stability restriction for the time step
size is τ ≤ h2∕2, a diffusion filter requires at least σ2∕h2
steps to produce the smoothing extent of σ.

To improve the efficiency of the diffusion filter, some
authors propose to compute semi-implicit (Drblkov and
Mikula, 2008) or implicit numerical (Hale, 2009) solu-
tions of the diffusion equation 5 with several large time
steps or a single step. However, these semi-implicit and
implicit schemes are often more difficult to implement
than the explicit scheme (equation 6) and need to solve
large linear systems (Grewenig et al., 2010). In this pa-
per, we use the FED method, proposed by Grewenig
et al. (2010) and Weickert et al. (2016), to solve the
explicit diffusion (equation 6) with fewer time steps
than a conventional explicit method.

Cyclic scheme
The FED method can be considered as a variant of

super time stepping schemes that use a set of different
time step sizes for the explicit diffusion. As discussed by
Grewenig et al. (2010), the FED method is based on two
aspects: (1) A Gaussian filter can be approximated by
several iterated box filters, and (2) a discrete box filter
is equivalent to a cycle of several explicit diffusion steps
with varying time step sizes. Therefore, the FED method
approximates a diffusion filter with M iterated cycles of
n explicit diffusion steps with varying time step sizes.

As discussed by Grewenig et al. (2010) and Weickert
et al. (2016), three (M ¼ 3) iterated box filters can yield
good approximation of a Gaussian filter. In addition, a
box filter Bh

2nþ1gi¼
P

n
k¼−nð1∕ð2nþ1ÞÞgk is equivalent to

a cycle of n explicit diffusions steps: Bh
2nþ1¼

Q
n−1
i¼0

ðIþτiΔÞ with the varying time step sizes

τi ¼
h2

4 cos2
�
π 2iþ1

4nþ2

� (7)

and the corresponding stopping diffusion time

tn ¼
Xn−1
i¼0

τi ¼
h2

6
ðn2 þ nÞ: (8)

To explain how this cyclic scheme improves the effi-
ciency of a diffusion filter, let us consider approximating
a Gaussian filter with half-width σ2 ¼ 72h2, which corre-
sponds to a diffusion time of T ¼ ð1∕2Þσ2 ¼ 36h2. The
conventional explicit scheme requires at least 72 diffu-
sion steps with a constant time step size τ ¼ h2∕2. Using
the cyclic scheme with three cycles (M ¼ 3), we need to
implement each cycle of explicit diffusion with a diffu-
sion time ð1∕3ÞT ¼ 12h2. According to equation 8, the dif-
fusion time in each cycle is given by ðh2∕6Þðn2 þ nÞ. This
means thatn ¼ 8 diffusion steps are required to reach the
time 12h2 in each cycle. Therefore, the cyclic scheme
with three cycles requires only 3 · 8 ¼ 24 explicit diffu-
sion steps to approximate the Gaussian filter (σ2 ¼ 72h2),
compared with at least 72 steps for a conventional
explicit scheme, which significantly improves the effi-
ciency of the explicit diffusion.

Although the FED method is derived from the 1D
linear homogeneous diffusion filter (equation 5), it is ac-
tually a general paradigm that is applicable to multidi-
mensional, nonlinear, and anisotropic diffusion filters
(Grewenig et al., 2010). Then, we will discuss how to use
this efficient FED method in 2D and 3D nonlinear and
anisotropic diffusion to simultaneously enhance seismic
reflections, faults, and channels.

Enhancing seismic reflections, faults, and channels
Using a diffusion filter to enhance anisotropic (linear in

two dimensions and planar in three dimensions) reflec-
tions in a seismic image, we expect the diffusion to be
anisotropic and aligned in directions along the seismic re-
flections. As discussed by Fehmers and Höcker (2003)
and Hale (2009), such anisotropic diffusion can be de-
signed by steering the diffusion with a diffusion tensor D:

∂gðx; tÞ
∂t

¼ ∇ · DðxÞ∇gðx; tÞ; (9)

where x represents the 2D or 3D spatial coordinates, ∇ is
the gradient operator, and the diffusion tensor field DðxÞ
can be constructed from eigenvectors of seismic structure
tensors.

Diffusion with reflection enhancement
As discussed previously in this paper, the eigenvec-

tor u corresponding to the maximum eigenvalue of a
structure tensor (equations 2 and 4) is perpendicular
to seismic reflections, whereas the other eigenvectors
v and w are aligned with seismic reflections. Therefore,
to enhance seismic reflections, we should smooth the
seismic image in directions of v in two dimensions or
v and w in three dimensions, but we avoid smoothing
in the direction along u. To steer the diffusion in direc-
tions along v andw for seismic reflection enhancing, we
can construct the diffusion tensor DðxÞ as
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DðxÞ ¼ μvðxÞvðxÞv⊤ðxÞ þ μwðxÞwðxÞw⊤ðxÞ; (10)

where the weights 0 ≤ μvðxÞ ≤ 1 and 0 ≤ μwðxÞ ≤ 1 are
used to design a diffusion filter with spatially variant
smoothing extents. In most cases, we can set
μvðxÞ ¼ μwðxÞ ¼ 1, which yields a spatially invariant
and isotropic smoothing extent in the directions along
vectors v and w. In 2D cases, a diffusion tensor field for
reflection enhancing can be constructed with only the
eigenvector v:

DðxÞ ¼ μvðxÞvðxÞv⊤ðxÞ: (11)

Themultidimensional and anisotropic diffusion (equa-
tion 9) can also be solved explicitly in k diffusion steps:

gðxi; tkþ1Þ ¼ ðI þ τ∇ · DðxiÞ∇Þgðxi; tkÞÞ (12)

with an initial image gðx; t0Þ ¼ gðxÞ and a constant time
step size τ. To speed up the diffusion process, we can
also use the FED method withM cycles of n explicit dif-
fusion steps. In all examples in this paper, we useM ¼ 3
for the number of FED cycles. We use equation 8 to com-
pute the smallest number of steps n in one cycle such
that the stopping time tn ≈ T∕M . For step i in each cycle,
we compute the time step size τi using equation 7. The
FED method for anisotropic diffusion with reflection
enhancing can be described as in the following pseudoc-
odes in Algorithm 1.

Figure 4 shows a 2D example of using anisotropic
diffusion to enhance seismic reflections. In this example,
we set the stopping time T ¼ 32 andM ¼ 3, which yields
24 explicit diffusion steps to compute the smoothed
seismic image shown in Figure 4a. With an eight-core
computer, computing the smoothed image in Figure 4a
takes only 0.037 s compared to 0.086 s in computing
the smoothed image in Figure 3a by using the structure-
oriented smoothing method (Hale, 2009). In this example,
we construct the diffusion tensor field as DrðxÞ ¼
vðxÞv⊤ðxÞ, which yields an anisotropic diffusion with a
constant smoothing extent along seismic reflections.
We observe that the seismic reflections in the smoothed
image (Figure 4a) are cleaner and more continuous
compared to the input seismic image (Figure 1a). Most
of the noise in the original seismic image
(Figure 1a) is removed as shown in the
input-output difference image (Figure4b).
However, the faults, recognized as lateral
discontinuities in the seismic image, are
also smoothed out because of the con-
stant-extent smoothing along seismic re-
flections.

Diffusion with reflection and fault
enhancement

To preserve reflection discontinuities
at faults, we should stop the anisotropic
diffusion near the faults. This means
that we need to construct anisotropic

diffusion with spatially variant smoothing extents,
which can be designed using diffusion tensors with spa-
tially variant weights as shown in equations 10 and 11.
Such spatially variant diffusion is similar to the problem
of diffusion with edge preserving (e.g., Alvarez et al.,
1992; Weickert, 1997, 2001; Fehmers and Höcker, 2003;
Hale, 2009). Hale (2009) first computes an image of
faults or edges and then uses the image to stop diffusion
across the faults. In this method, the fault image is not
updated and therefore the diffusion is linear. Most
methods (Alvarez et al., 1992; Weickert, 1997, 2001;
Fehmers and Höcker, 2003) construct nonlinear diffu-
sion for preserving edges, which keeps updating the
edge image while iteratively performing the diffusion
process. Linear diffusion without updating the edge im-
age is often more efficient. Nonlinear diffusion is less
efficient, but it can gradually update the edge image

Algorithm 1. Diffusion with reflection enhancement.

1. Input:

2. (a) image gðxÞ;
3. (b) stopping time T;

4. (c) number of FED cycles M (M ¼ 3)

5. Initialization:

6. (a) initial image gðx; 0Þ ¼ gðxÞ;
7. (b) compute the diffusion tensor DrðxÞ ¼ vv⊤ þ ww⊤;

8. (c) compute the smallest n of one cycle such that stopping
time tn ≈ T∕M (equation 8);

9. (d) compute the time step sizes τi (equation 7) in one cycle

10. Diffusion loop:

11. for k :¼ 0 to M step 1 do

12. for i :¼ 0 to n step 1 do

13. gðx; tiþ1Þ ¼ ðI þ τi∇ · DrðxÞ∇Þgðx; tiÞÞ
14. end for

15. gðx; tkþ1Þ←gðx; tnÞ
16. end for

17. Output:

18. (a) smoothed seismic image gðx; tMÞ

Figure 4. (a) Smoothed image computed by the proposed fast anisotropic dif-
fusion with reflection enhancing (computational time: 0.037 s). (b) Input-output
difference.
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during the diffusion process. In this paper, we apply
nonlinear diffusion to iteratively update the image of
seismic faults while smoothing seismic reflections. We
also apply approximate fault-oriented smoothing to
the fault image to enhance the fault features. This
iteratively updated and enhanced fault image is used
to preserve discontinuities corresponding to faults in
the smoothed seismic image, and it also provides a good
detection of faults.

To detect edges in an image, Weickert (2001) uses a
scalar-valued diffusivity function defined as

wðxÞ¼
(
1; j∇gðxÞj2¼0

1−exp
�
− 3.315

ðj∇gðxÞj2∕α2Þ4
�
; j∇gðxÞj2>0

; (13)

where gðxÞ is an input image and α is a constant param-
eter separating low-contrast regions from high-contrast
locations where edges may exist (Weickert, 2001). To de-
tect faults from seismic reflections, we cannot directly
use the image gradient to compute a diffusivity function
because the large gradients of a seismic image do not
correspond to faults.

To detect the faults that are recognized as lateral
discontinuities of seismic reflections, we should use di-
rectional derivatives of the seismic image to compute
structure-oriented diffusivity function:

sðxÞ ¼
(
1; d2ðxÞ ¼ 0

1 − exp
�
− 3.315

ðd2ðxÞ∕α2Þ4
�
; d2ðxÞ > 0

; (14)

where dðxÞ is defined as dðxÞ ¼ v⊤ðxÞ∇gðxÞ þw⊤ðxÞ
∇gðxÞ. The functions v⊤ðxÞ∇gðxÞ and w⊤ðxÞ∇gðxÞ re-
present the directional derivatives of the seismic image
gðxÞ in the directions along eigenvectors vðxÞ and wðxÞ,
respectively. Because the eigenvectors vðxÞ and wðxÞ
are aligned within the seismic reflections, the directional
derivatives are computed along the seismic reflections.
In 2D cases, the directional derivatives are computed
only along the eigenvectors vðxÞ: dðxÞ ¼ v⊤ðxÞ∇gðxÞ.
Of course, there are a lot more sophisticated seismic
attributes including semblance (Marfurt et al., 1998), co-
herency (Marfurt et al., 1999), variance (Van Bemmel and
Pepper, 2000; Randen et al., 2001),and fault likelihoods
(Hale, 2013) that may be even better than the struc-
ture-oriented diffusivity to detect faults from an original
noisy seismic image. However, as denoted in equation 14,
computing the diffusivity is much more efficient than all
of these sophisticated attributes, and we will show that
the diffusivity will be gradually updated and enhanced
during our iterative diffusion and eventually provide a
good detection of faults.

Figure 5a shows a fault image f ðxÞ ¼ 1 − sðxÞ, where
sðxÞ is diffusivity computed using equation 14 with
α ¼ 0.12. In this image, the features with relatively high
values detect the fault positions in the seismic image
but also highlight noise, which does not correspond to
faults. In addition, the fault features are discontinuous
as shown in this image (Figure 5). Therefore, we might
want to further smooth the fault image along fault ori-
entations so that the fault features are enhanced and

more continuous while the features un-
related to faults are suppressed.

As discussed by Bakker (2002) and
Hale (2009), faults often cut through
multiple reflections and are often approx-
imately dipping in directions perpen-
dicular to seismic reflections. Therefore,
the eigenvectors uðxÞ can be good ap-
proximations of the fault dip directions
in most cases. Also as shown by Wu
(2017), the fault strike directions can be
approximated by eigenvectors wðxÞ.
Therefore, we may want to smooth the
diffusivity or fault image (Figure 5) in di-
rections of eigenvectors uðxÞ andwðxÞ to
enhance the image features related to
faults and suppress noise that is often
arbitrarily oriented. To smooth the image
along the eigenvectors uðxÞ andwðxÞ, we
use the anisotropic diffusion described in
Algorithm 1 with the diffusion tensor field
constructed as DuwðxÞ ¼ uðxÞu⊤ðxÞþ
wðxÞw⊤ðxÞ. In 2D cases, we smooth
the fault image (Figure 5) along the eigen-
vectors uðxÞ with the diffusion tensor
constructed as DðxÞ ¼ uðxÞu⊤ðxÞ. Fig-
ure 5a shows smoothed fault image
f uðxÞ ¼ 1 − suðxÞ, where suðxÞ¼hsðxÞiu
and the angle brackets h·iu represent the

Figure 5. Diffusivity image (a) before and (b) after anisotropic diffusion in the
directions along eigenvectors u (perpendicular to the reflections).

Figure 6. (a) Thinned diffusivity image computed from Figure 5b by keeping its
nonzero values only on the ridges. (b) Thinned diffusivity image after the aniso-
tropic diffusion with reflection and fault enhancing.
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anisotropic diffusion in directions along eigenvectors
uðxÞ. The fault features in this image (Figure 5b) aremore
continuous compared with the one (Figure 5a) before the
smoothing. However, we do not expect faults to be as
thick as the features apparent in this image (Figure 5b).
Therefore, we keep only the values on the ridges of the
image and we set the values elsewhere to be zero to com-
pute the corresponding thinned image as shown in Fig-
ure 6a. In this thinned image (Figure 6a), nonzero values
are apparent at samples that are on faults but also at sam-
ples unrelated to faults. However, this is just an initialmap
of faults used to stop smoothing at faults in the nonlinear
diffusion process. This map will be itera-
tively updated and improved during the
iterative anisotropic diffusion process.

The nonlinear and anisotropic diffu-
sion for enhancing seismic reflections
and updating the fault map can be de-
scribed as in the pseudocodes in Algo-
rithm 2.

In this algorithm of anisotropic diffu-
sion with fault enhancing, we do not up-
date the diffusion tensor field at each
diffusion step i; instead, we only update
it at each cycle k:Df ðx; tkÞ ¼ stðx; tkÞvv⊤
þstðx; tkÞww⊤, where only the thinned
and smoothed diffusivity stðx; tkÞ is up-
dated at each cycle but the vectors v

and w are not updated. This means that
the diffusivity and diffusion tensor field
are computed only M (M ¼ 3 in this pa-
per) times during the whole diffusion
process. In 2D cases, the diffusion tensor
field is computed using only the eigen-
vectors vðxÞ: Df ðx; tkÞ ¼ stðx; tkÞvv⊤.
Using this method, we are able to simul-
taneously obtain a smoothed seismic
image with fault preservation and an en-
hanced fault image that highlights fault
locations.

Figure 6b shows the finally updated
fault image f tðxÞ ¼ 1 − stðx; tkÞ overlaid
with the finally updated seismic image.
We observe that a lot of suspicious fea-
tures in the initial fault image (Figure 6a)
are removed in the updated fault image
(Figure 6b). The nonzero samples in the
initial fault image (Figure 6a) indicate
that the left- and right-neighboring reflec-
tions of these samples are discontinuous.
However, such reflection discontinuities
do not necessarily correspond to faults
and they may actually correspond to
noise. During the nonlinear and aniso-
tropic diffusion process (Algorithm 2),
smoothing is performed along the left
and right reflections of these nonzero
samples, but it is stopped at these sam-
ples. After some diffusion steps, the noise

on the left and right reflections of these nonzero samples
will be smoothed out. The smoothed reflections on the
left and right sides of these nonzero samples will become
consistent and continuous if these samples do not corre-
spond to faults, but the left and right reflections will be
still discontinuous and inconsistent if these samples cor-
respond to true faults. Therefore, in the updated fault
image (Figure 6b), the nonzero values corresponding to
noise are removed whereas those corresponding to true
faults are preserved. This updated fault image provides a
good detection of the fault positions.

Algorithm 2. Anisotropic diffusion with reflection and fault enhancement.

1. Input:

2. (a) image gðxÞ;
3. (b) stopping time T;

4. (c) number of FED cycles M (M ¼ 3)

5. Initialization:

6. (a) initial image gðx; 0Þ ¼ gðxÞ;
7. (b) compute the diffusion tensor DuwðxÞ ¼ uu⊤ þ ww⊤ for diffusivity

smoothing;

8. (c) compute the smallest n of one cycle such that stopping time tn ≈ T∕M
(equation 8);

9. (d) compute the time step sizes τi (equation 7) in one cycle

10. Diffusion loop:

11. for k :¼ 0 to M step 1 do

12. compute the diffusivity sðx; tkÞ from gðx; tkÞ;
13. compute the smoothed diffusivity suwðx; tkÞ ¼ hsðx; tkÞiuw;
14. compute the thinned diffusivity stðx; tkÞ from suwðx; tkÞ;
15. compute the diffusion tensor: Dfðx; tkÞ ¼ stðx; tkÞvv⊤ þ stðx; tkÞww⊤;

16. for i :¼ 0 to n step 1do

17. gðx; tiþ1Þ ¼ ðI þ τi∇ · Dfðx; tkÞ∇Þgðx; tiÞÞ
18. end for

19. gðx; tkþ1Þ←gðx; tnÞ
20. end for

21. Output:

22. (a) smoothed seismic image gðx; tMÞ with fault preservation;

23. (b) enhanced fault image ftðxÞ ¼ 1 − stðx; tMÞ

Figure 7. (a) Smoothed image computed by the proposed anisotropic diffusion
with reflection and fault enhancing. (b) Input-output difference.
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Figure 7a and 7b shows the smoothed seismic image
and the input-output difference image, respectively. We
observe that the noise in the seismic image is removed.
The seismic reflections are continuous everywhere but
are discontinuous at faults. The seismic reflections and
faults in this smoothed image (Figure 7a) are clearer than
those in the original seismic image (Figure 1a). Although
this method is applied only to a 2D example in this paper,
the corresponding algorithm (Algorithm 2) is actually de-

signed in three dimensions, and therefore it is applicable
to a 3D seismic image to simultaneously detect 3D faults
and enhance reflections and faults in the image.

Diffusion with reflection and channel
enhancement

In addition to the structural features of reflections
and faults, stratigraphic features such as channels
are also contained in a seismic image, as shown in
Figure 8. This 3D seismic image is a subset extracted
from the 1520 km2 Parihaka 3D seismic survey located
at the Taranaki Basin, a broad sedimentary basin on the
western side of the North Island, New Zealand. This
Taranaki Basin covers approximately 100;000 km2, and
the basin lying offshore is mostly at water depths be-
tween 50 and 250 m. A lot of large-scale and fine-scale
channels are apparent within the acquired Parihaka 3D
seismic volume (Johnston, 2014), and some of the chan-
nels are obviously visible on the time slice of the subset
volume (Figure 8). Seismic channels are often aligned
within dipping seismic reflections. We are able to ob-
serve channels in the horizontal time slice of the 3D
seismic image in Figure 8 because the reflections in this
seismic image are only slightly dipping.

Similar to seismic faults, the channels are also recog-
nized as lateral discontinuities along seismic reflections

as shown in the vertical slices in the 3D
seismic image (Figure 8). Therefore, if
we apply the structure-oriented smooth-
ing method (Hale, 2009) to smooth the
seismic image along seismic reflections,
we are able to enhance the reflections
but also smooth out the channels as
shown in Figure 9. Similarly, if we per-
form simple anisotropic diffusion (Algo-
rithm 1) along seismic reflections, we
obtain almost the same smoothed results
as shown in Figure 10. Figure 10a and
10b, respectively, shows the smoothed
image and input-output difference image
computed using the anisotropic diffusion
(Algorithm 1) with a diffusion tensor field
DðxÞ defined as DðxÞ¼ vv⊤ þww⊤. In
Figure 10a and 10b, we observe that
noise is removed and reflections are
more continuous as shown in the vertical
slices but the channels are also removed
as shown in the horizontal time slices.
Note that the fast explicit anisotropic dif-
fusion used in this paper requires only
24.9 s to compute the smoothed image
in Figure 10a compared with 43.8 s to
compute the smoothed image in Figure 9a
by using Hale’s method, which, again,
demonstrates that the FED method is
much more efficient.

Because the eigenvectors vðxÞ are
laterally perpendicular to seismic chan-
nels whereas the eigenvectors wðxÞ are

Figure 8. A 3D seismic image with channels apparent on the
time slice.

Figure 9. (a) Smoothed image computed by Hale’s method (computational
time: 43.8 s). (b) Input-output difference.

Figure 10. (a) Smoothed image computed by the proposed fast anisotropic dif-
fusion with reflection enhancing (computational time: 24.9 s). (b) Input-output
difference.
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laterally parallel to the channels (Figure 2), we may de-
fine the diffusion tensor field as DðxÞ¼ ww⊤ to smooth
the seismic image only in directions along eigenvectors
wðxÞ to enhance seismic channels. Figure 11a and 11b,
respectively, shows the smoothed image and input-out-
put difference image computed using the anisotropic
diffusion (Algorithm 1) with a diffusion tensor field
DðxÞ defined as DðxÞ¼ ww⊤. In Figure 11a and 11b,
we observe that noise is removed to some extent and
reflections and channels are enhanced as shown in
the vertical and horizontal slices.

However, some noises, especially
those in the crossline slice, are not re-
moved because we smooth the image
along only one direction of the eigenvec-
torwðxÞ and the noises may be coherent
in this direction. Moreover, the smooth-
ing generates some suspicious linear
features in the areas highlighted by the
yellow ellipses (Figure 11a), whereas
the image features in the same areas of
the original image (Figure 8) are actually
isotropic. By smoothing along reflections
in only one direction ofwðxÞ, we actually
assume that linear features, such as chan-
nels, are apparent everywhere along seis-
mic reflections in the seismic image. This
assumption is not true in most cases in
which the image features along seismic
reflections are mostly isotropic and are
linear (anisotropic) in only limited areas.
This means that the anisotropy of image
features along reflections is actually spa-
tially variant, which indicates that we
should also apply spatially variant aniso-
tropic smoothing to enhance the image
features, instead of applying smoothing
along eigenvectors wðxÞ everywhere in
the seismic image.

Specifically, in areas with isotropic fea-
tures along reflections, we should apply
isotropic smoothing along reflections in
the directions of eigenvectors vðxÞ and
wðxÞ. In areas with anisotropic (linear)
features along reflections, we should
apply anisotropic smoothing along re-
flections only in the direction of eigen-
vector wðxÞ, which is aligned with the
linear features. To implement such spa-
tially variant (along reflections) smooth-
ing, we use anisotropic diffusion with a
diffusion tensor field defined as follows:

DðxÞ ¼ cðxÞvðxÞv⊤ðxÞ þwðxÞw⊤ðxÞ;
(15)

where 0 ≤ cðxÞ ≤ 1 is a map that high-
lights seismic channels with relatively
low values. Near seismic channels, cðxÞ

is close to zero and the smoothing in the direction of
vðxÞ (perpendicular to channels) will be stopped. In
areas without channels, cðxÞ is close to one and the
smoothing will be isotropic along reflections in the direc-
tion of vðxÞ and wðxÞ.

We compute such a map (cðxÞ) of seismic channels,
again, from the structure-oriented diffusivity sðxÞ (equa-
tion 14). Figure 12a shows a structure-oriented diffusiv-
ity image computed from the original 3D seismic image
(Figure 8) with α ¼ 0.1. This diffusivity image highlights
(with relatively low values) channels and also noise in the

Figure 11. (a) Smoothed image by the proposed anisotropic diffusion with
channel enhancing. (b) Input-output difference.

Algorithm 3. Anisotropic diffusion with reflection and channel
enhancement.

1. Input:

2. (a) image gðxÞ;
3. (b) stopping time T;

4. (c) number of FED cycles M (M ¼ 3)

5. Initialization:

6. (a) initial image gðx; 0Þ ¼ gðxÞ;
7. (b) compute the diffusion tensor DwðxÞ ¼ ww⊤ for diffusivity smoothing;

8. (c) compute the smallest n of one cycle such that stopping time tn ≈ T∕M
(equation 8);

9. (d) compute the time step sizes τi (equation 7) in one cycle

10. Diffusion loop:

11. for k :¼ 0 to M step 1do

12. compute the diffusivity sðx; tkÞ from gðx; tkÞ;
13. compute the smoothed diffusivity swðx; tkÞ ¼ hsðx; tkÞiw;
14. compute the diffusion tensor: Dcðx; tkÞ ¼ swðx; tkÞvv⊤ þ ww⊤;

15. for i :¼ 0 to n step 1do

16. gðx; tiþ1Þ ¼ ðI þ τi∇ · Dcðx; tkÞ∇Þgðx; tiÞÞ
17. end for

18. gðx; tkþ1Þ←gðx; tnÞ
19. end for

20. Output:

21. (a) smoothed seismic image gðx; tMÞ with fault preservation;

22. (b) enhanced channel image cðxÞ ¼ swðx; tMÞ
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3D seismic image. Similar to the diffusivity used in Algo-
rithm 1, this diffusivity image is just an initial map of chan-
nels used to construct the diffusion tensor field.During the
diffusion process, we will iteratively update the map and
also enhance themapby smoothing it along channel orien-
tations(wðxÞ) ineachupdate.Thepseudocodesbelow(Al-
gorithm 3) describe the diffusion scheme that we used to
simultaneouslycomputeanimageofchannelsandenhance
seismic reflections and channels.

In the whole diffusion process, we totally update the
diffusivity image sðx; tkÞ M times (M ¼ 3 in this paper).
For each update, we smooth the diffusivity image sðx; tkÞ
in the direction of wðxÞ to enhance the image features
corresponding to seismic channels. This smoothed diffu-

sivity image swðx; tkÞ ¼ hsðx; tkÞiw is further used to up-
date the diffusion tensor field Dcðx; tkÞ ¼ swðx; tkÞvv⊤
þww⊤. This finally updated and smoothed diffusivity im-
age swðx; tMÞ is also an output as amap detecting seismic
channels.

Figure 12b shows the final output diffusivity image in
which the noise is removed and the channel features
are much clearer and continuous compared to the ini-
tial diffusivity image (Figure 12a). Figure 13a shows the
smoothed seismic image gðx; tMÞ, in which the seismic
reflections and channels are enhanced. In addition, the
suspicious linear features, highlighted by the yellow el-
lipses in Figure 11a, do not appear in this smoothed
seismic image (Figure 13a). From the input-output dif-

ference image shown in Figure 13b,
noise in the original seismic image is re-
moved but the seismic channels are
well-preserved.

Discussions
In this paper, we first discussed a gen-

eral method of enhancing seismic reflec-
tions, which, however, blurs faults and
channels in the seismic image. We then
discussed a method to simultaneously
enhance reflections and faults in a seis-
mic image while computing an image of
seismic faults. We finally discussed a
similar method to simultaneously en-
hance reflections and channels in a seis-
mic image while computing an image of
channels. We implement all the methods
using the same FED scheme but with
different diffusion tensor fields, which
define the smoothing orientations and
smoothing extents for the diffusion
process.

As shown in Figure 14, the diffusion
tensors for the three methods, respec-
tively, are defined as (1) DrðxÞ ¼ vv⊤þ
ww⊤, (2) Df ðx;tkÞ¼stðx;tkÞðvv⊤þww⊤Þ,
and (3) Dcðx; tkÞ ¼ swðx; tkÞvv⊤ þww⊤.
As discussed in the previous sections,
stðx; tkÞ represents a thinned fault image
or mapping and swðx; tkÞ represents an
image of seismic channels. From the def-
initions, the smoothing extents in the first
method are spatially constant in the di-
rections of v and w because the weights
for the two terms vv⊤ and ww⊤ are equal
to one. In the second method, the
smoothing extents in the directions of v
and w are spatially variant and are de-
fined by a weighting map stðx; tkÞ. In the
second method, the smoothing extents in
the direction of v are spatially variant and
are defined by a weighting map swðx; tkÞ,
whereas the smoothing extents in the di-
rection of w are spatially constant.

Figure 12. A diffusivity image (a) before and (b) after the anisotropic diffusion
with reflection and channel enhancing.

Figure 13. (a) Smoothed image by the proposed anisotropic diffusion with re-
flection and channel enhancing. (b) Input-output difference.

Figure 14. A comparison of diffusion tensors in all the three smoothing meth-
ods. These tensors define the smoothing directions and extents.
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If we consider the smoothing in three directions of
eigenvectors uðxÞ, vðxÞ, and wðxÞ, then the diffusion
in all the methods is anisotropic because in these meth-
ods we smooth a seismic image in directions parallel
(uðxÞ and vðxÞ) to but not perpendicular (uðxÞ) to the
reflections. However, because the direction of eigenvec-
tor uðxÞ is not used in constructing the diffusion tensors
in all three methods, we can actually consider the
smoothing in only two directions of eigenvectors vðxÞ
and wðxÞ & thinsp;. Then, the smoothing in the first
and second methods is always isotropic because the
smoothing extents (stðx; tkÞ) in the directions of vðxÞ
and wðxÞ are always the same at each image sample
x. The smoothing in the third method is mostly aniso-
tropic (swðx; tkÞ < 1 in most areas) and is isotropic only
in areas with swðx; tkÞ ¼ 1.

For seismic images with faults and channels, it is con-
venient to construct an anisotropic diffusion filter to si-
multaneously enhance reflections, faults, and channels
by defining the diffusion tensor as stðx; tkÞ½swðx; tkÞ
vv⊤ þww⊤�, where, again, the mappings stðx; tkÞ and
swðx; tkÞ highlight faults and channels with relatively
low values. In this case, the diffusion will be anisotropic
and the smoothing extent will be spatially variant.

Conclusion
We have discussed structure- and stratigraphy-ori-

ented smoothing methods to simultaneously enhance re-
flections, faults, and channels in a seismic image while
computing images of faults and channels. We implement
these methods using FED with different diffusion ten-
sors, which control the smoothing orientations and ex-
tents in the diffusion. In constructing such diffusion
tensors, we use seismic structural and stratigraphic ori-
entations to define the diffusion orientations and we use
mappings of faults and channels to define the diffusion
extents. During the entire diffusion processing, the map-
pings of faults and channels are iteratively updated
together with the seismic image. In addition, these map-
pings are further enhanced at each update by fault- or
channel-oriented smoothing.

Mappings with fault and channel detections are re-
quired to define small diffusion extents near the faults
and channels and therefore to preserve reflection discon-
tinuities near the faults and channels when smoothing a
seismic image. On the other hand, the fault and channel
mappings, computed as measurements of reflection dis-
continuities, are often sensitive to noise, which also gen-
erates reflection discontinuities in the seismic image. The
smoothing of the seismic image can be helpful to remove
the suspicious fault and channel detections due to noise.
This is why we simultaneously update the fault and chan-
nel mappings while smoothing the seismic image. In
addition, the reflection discontinuities corresponding to
noise are often spatially inconsistent while faults and
channels are apparent as spatially coherent reflection dis-
continuities in a seismic image. Therefore, before using
the fault and channel mappings to construct diffusion ten-
sors, we first apply fault- or channel-oriented smoothing

to further enhance faults and channels and suppress
noise in the mappings. In fault-oriented smoothing, we
use the eigenvectors u and w to approximate the fault
dip and strike directions, respectively. This has been
proven to be a good approximation in many cases, but
can be poor for some cases in which the faults are not
dipping in directions perpendicular to seismic reflec-
tions. Therefore, a better way of estimating fault orien-
tations is still desirable to further improve the methods
discussed in this paper.

The cyclic scheme of the FEDmethod helps to reduce
the extra computational costs required in updating
and enhancing the fault and channel images. First, this
scheme speeds up the diffusion processing by signifi-
cantly reducing the number of diffusion steps. Second,
in this scheme we do not update the fault and channel
images at each diffusion step, we actually update these
images only at each cycle and in total only three times in
the entire smoothing processing.

Although faults and channels can be recognized as lat-
eral reflection discontinuities in a seismic image, chan-
nels are also consistent linear features aligned within
reflections in a 3D seismic image. Therefore, to enhance
channels in a 3D seismic image, we not only sharpen the
reflection discontinuities at the channel boundaries, but
we also smooth the seismic image along the stratigraphic
orientations to enhance the linear channel features.
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