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Least-squares horizons with local slopes and multigrid correlations

Xinming Wu' and Sergey Fomel'

ABSTRACT

Most seismic horizon extraction methods are based on seismic
local reflection slopes that locally follow seismic structural fea-
tures. However, these methods often fail to correctly track hori-
zons across discontinuities such as faults and noise because the
local slopes can only correctly follow laterally continuous reflec-
tions. In addition, seismic amplitude or phase information is not
used in these methods to compute horizons that follow a consis-
tent phase (e.g., peaks or troughs). To solve these problems, we
have developed a novel method to compute horizons that globally
fit the local slopes and multigrid correlations of seismic traces. In
this method, we first estimate local reflection slopes by using
structure tensors and compute laterally multigrid slopes by using
dynamic time warping (DTW) to correlate seismic traces within
multiple laterally coarse grids. These coarse-grid slopes can

correctly correlate reflections that may be significantly dislocated
by faults or other discontinuous structures. Then, we compute a
horizon by fitting, in the least-squares sense, the slopes of the
horizon with the local reflection slopes and multigrid slopes or
correlations computed by DTW. In this least-squares system, the
local slopes on the fine grid and the multiple coarse-grid slopes
will fit a consistent horizon in areas without lateral discontinu-
ities. Across laterally discontinuous areas where the local slopes
fail to correctly correlate reflections and mislead the horizon ex-
traction, the coarse-grid slopes will help to find the corresponding
reflections and correct the horizon extraction. In addition, the
multigrid correlations or slopes computed by dynamic warping
can also assist in computing phase-consistent horizons. We apply
the proposed horizon extraction method to multiple 2D and 3D
examples and obtain accurate horizons that follow consistent
phases and correctly track reflections across faults.

INTRODUCTION

By laterally tracking consistent seismic reflections, we are able to
identify horizons from seismic images. Seismic horizons are often
considered as geologically synchronous surfaces (Vail et al., 1977),
which are important for building subsurface structural and strati-
graphic models. Seismic attribute features computed on a horizon
surface are also helpful for seismic geomorphology analysis (Pos-
amentier et al., 2007). Therefore, seismic horizon interpretation has
been a common and key step for seismic interpretation.

Numerous methods have been proposed to automatically or semi-
automatically extract horizons from seismic images. Some methods
are based on seismic instantaneous phase by assuming a horizon is a
curve (two dimensions) or surface (three dimensions) that follows
relatively constant phase through the whole seismic image. In these
phase-based methods, the instantaneous phases are first unwrapped
to obtain a relative geologic time (RGT) volume and the horizons
are then extracted as contours of the RGT values (Stark, 2003, 2004,

2005; Wu and Zhong, 2012). Some other methods are based on
seismic waveform classifications. In these methods, a horizon is
gradually grown from a seed point by recursively following wave-
forms with the most similarities (Figueiredo et al., 2007, 2014,
2015).

Most horizon extraction methods are based on seismic local
reflection slopes that estimate the geometric orientations of reflec-
tions. The local reflection slopes can be estimated by using structure
tensors (Bakker et al., 1999; Bakker, 2002; Hale, 2009b; Wu and
Janson, 2017), plane-wave destruction filters (Fomel, 2002), sem-
blance scanning (Marfurt, 2006), 2D log-Gabor filtering (Yu et al.,
2013), and smooth dynamic image warping (Arias, 2016). The local
slopes can correctly follow laterally continuous reflections, but they
often fail to correlate significantly displaced reflections across
faults. A straightforward slope-based horizon extraction method is
to pick horizons by starting from seed points and then recursively
following the local slopes (Fomel, 2010). Most slope-based meth-
ods (e.g., Lomask et al., 2006; Parks, 2010; Wu and Hale, 2013,
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2015; Zinck et al., 2013; Monniron et al., 2016) compute horizons
by fitting the slopes of horizons with the local reflection slopes in
the least-squares sense. By recursively following local slopes or fit-
ting local slopes in the least-squares sense, the computed horizons
can correctly follow laterally continuous reflections but they often
fail to track corresponding reflections across faults because the local
slopes cannot correctly correlate reflections across faults. To solve
this problem, methods are proposed to remove the faulting (Luo and
Hale, 2013; Wu and Hale, 2016; Wu et al., 2016) in the seismic
images before computing horizons or to incorporate manual control
points (Wu and Hale, 2015) (on the opposite sides of faults) as con-
straints during the horizon computation.

We propose a new method to accurately extract horizons across
faults without the need of removing faulting or manually picking
control points across faults. In our method, we first use structure
tensors to estimate the linearity (two dimensions) or planarity (three
dimensions) and local slopes of seismic reflections. The linearity
or planarity highlights reflection discontinuities with relatively low
values. We also compute laterally multigrid slopes by directly cor-
relating seismic traces within multiple laterally coarse grids. These
multigrid slopes can help to correlate reflections across faults and
find consistent phase correlations of the seismic traces. Then, we
compute horizons by fitting, in the least-squares sense, the slopes
of horizons with the local reflection slopes and multigrid slopes. In
areas without faults, the local slopes and coarse-grid slopes will be
consistent to fit a horizon. Near faults where the local slopes fail to
correctly correlate reflections, the local slopes are weighted by low
linearity or planarity values in the least-squares system. By doing
this, we are able to reduce their relative influence in the least-
squares system and allow the coarse-grid slopes, that correctly cor-
relate reflection slopes across faults, to contribute more to fit a
correct horizon across faults. In addition, the multigrid slopes or
correlations can be helpful to constrain the horizon extraction to
follow consistent phases. We show multiple 2D and 3D examples
with faults to demonstrate the proposed method with the local
slopes and multigrid correlations, which yields much more accurate
horizons than the conventional methods that use only local slopes.

SLOPES AND CORRELATIONS

Seismic reflection slopes are important for most automatic meth-
ods to extract horizons following seismic reflections. The slopes can
be estimated by numerous methods including structure tensors
(Bakker et al., 1999; Bakker, 2002; Hale, 2009b), plane-wave de-
struction (Fomel, 2002), semblance scanning (Marfurt, 2006), 2D
log-Gabor filtering (Yu et al., 2013), and smooth dynamic image
warping (Arias, 2016). In this paper, we use structure tensors to
estimate local reflection slopes for seismic horizon extraction.

Structure tensors

Structure tensors, first proposed for common digital image
processing (e.g., Van Vliet and Verbeek, 1995; Weickert, 1997), have
been widely used in estimating seismic structural (Bakker, 2002;
Fehmers and Hocker, 2003; Hale, 2009b) and stratigraphic (Wu,
2017; Wu and Janson, 2017) orientations.

Structure tensors are generally constructed as smoothed outer
products of gradients g(x) of an image such as the one shown in
Figure la. In 2D cases, a structure tensor T(x) field at all image
samples x can be computed as

where g, (x) and g, (x), respectively, represent the vertical and hori-
zontal components of the image gradients g(x). The structure tensor
field contains three independent components g3(x), g; (x)g,(x), and
g5(x), each of which can be considered as a 2D image with the same
dimensions as the input image. (-) represents 2D smoothing of each
component of the structure tensor field. This smoothing (-} is often
implemented as a Gaussian filter. In all 2D examples in this paper,
we implement the smoothing (-) by using 2D recursive Gaussian
smoothing filters (Hale, 2006) with half-widths ¢; = 8 (samples)
and 0, = 2 (samples) in the vertical and inline directions, respec-
tively. We use a larger vertical smoothing window because the
vertical sampling is often finer than the horizontal sampling in a
seismic image.

The structure tensors constructed in this way (equation 3) are
2 x 2 symmetric positive-semidefinite matrices with the following
eigendecompositions:

T =2uu’ +2,v', )

where u and v are the normalized eigenvectors corresponding
the eigenvalues 4, and A,, respectively. By assuming 4, > 4,, the
corresponding eigenvectors u(x) will be perpendicular to seismic
reflections whereas the eigenvectors v(x) will be parallel to the re-
flections.

In 3D cases, a structure tensor T(x) field at all image samples x
can be constructed as

3

where we implement the smoothing (-) by using 3D recursive Gaus-
sian filters with half-widths ¢; = 8 (samples), o, = 2 (samples),
and o3 = 2 (samples) in the vertical, inline, and crossline directions,
respectively. Similarly, the eigendecompositions of 3D structure
tensors can provide the orientation estimation of seismic reflections:

T=ruu’ +21,v' +1,ww', 4)

where the normalized eigenvectors u are perpendicular to seismic
reflections, whereas the eigenvectors v and w are aligned within
planes that are locally parallel to the reflections.

The eigenvalues 4, (x), 4,(x), and 4,,(x) are also useful to measure
the anisotropy of seismic reflections such as the linearity (two dimen-
sions) or planarity (three dimensions) as follows (Hale, 2009b; Wu,
2017):

_ ’114 (X - /11)(X)
c(x) = O )

As shown in Figure 1b, the linearity map ¢(x) (0 < ¢(x) < 1) can be
used to highlight reflection discontinuities at faults where the linear-
ity will be lower.
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Reflection slopes

Assuming that the reflection normal vectors u(x) are always
pointing downward, we can compute inline and crossline reflection
slopes from the normal vectors as follows:

p(x)=- ) and q(X)Z—u;(X), (6)

where u, (x), u,(x), and u3(x), respectively, are the vertical, inline,
and crossline components of the vectors u(x). Accordingly, p(x)
and ¢(x) represent the inline and crossline reflection slopes, respec-
tively.

The cyan segments in Figure 1c represent a subset of the slope
vectors [p(x), 1], which correctly follow locally continuous reflec-
tions. The slopes p(x), estimated from structure tensors, can be
actually considered as relatively vertical shifts that correlate nearby
seismic traces. These estimated slopes can correctly correlate later-
ally continuous reflections of nearby traces, but often fail to corre-
late laterally discontinuous reflections that may be significantly
dislocated by faults or noise.

To estimate large relative shifts of reflections across faults, we
can directly correlate the seismic traces on the opposite sides of
faults by using the methods of crosscorrelation (Hale, 2009a), local
similarity (Fomel and Jin, 2009), or dynamic time warping) (Hale,
2013). The two vertical yellow lines in Figure 1d represent two seis-
mic traces f and g that are on opposite sides of the large-displace-
ment fault highlighted by the yellow line in Figure 1a. By locally
following the local slope vectors shown in Figure 1c, we will not be
able to find the correct correlations of these two traces. However, we
can use the DTW method to directly compute accurate correlations
of the two traces as denoted by the red lines in Figure 1d.

Dynamic time warping

The DTW method is first proposed by Sakoe and Chiba (1978) in
speech recognition, and then it is widely used in geophysics to cor-
relate well logs (e.g., Smith and Waterman, 1980; Wu and Nyland,
1987; Julio et al., 2012; Wheeler and Hale, 2014; Wu et al., 2017)
and seismic traces or images (e.g., Hale, 2013; Herrera and van der
Baan, 2014; Wu and Caumon, 2017). DTW is robust to estimate
correlation shifts in the presence of noise, and it is often more
accurate than windowed crosscorrelation methods, especially in
estimating rapidly varying shifts (Hale, 2013).

To compute the correlation shifts s = (s, s,, ...,s,) of two
sequences, such as the two seismic traces £ = (f1, f2, ..., n)
and g = (91,9, --.,9,) extracted from the 2D seismic section
(Figure 1d), DTW solves the following constrained minimization
problem:

arg min Z(f,- — gits,)? subjectto |s; —s,| <&, (7
§ i=1

where the shift strain 0 < & < 1 defines squeezing (s; — s;,_; < 0) or
stretching (s; — s;_1 > 0) (Hale, 2013) in shifting one sequence to
the other.

With the shifts s = (sy,s,, ...,s,) computed from the DTW
method, we are able to build pair-wise correlations between all

the samples in the seismic traces f and g. The red lines in Figures 1d
and 2 denote a subset of such pair-wise correlations, which correctly
link geologically corresponding reflections as shown in Figure 1d.

In the following sections, we will use structure tensors to estimate
local slopes of reflections and use DTW to estimate laterally more
global correlations of reflections on coarse grids. We further formu-
late a weighted least-squares system to compute a horizon that is
consistent with local and global correlations.

HORIZONS WITH LOCAL SLOPES

With the estimated local reflection slopes, a straightforward way
of picking horizons is to start with seed points and then predictively
follow the local slopes (Fomel, 2010). Another commonly used way
of slope-based horizon picking is to globally fit horizon slopes with
the preestimated local reflection slopes in the least-squares sense
(e.g., Lomask et al., 2006; Parks, 2010; Wu and Hale, 2013, 2015).

Predictive horizons with local slopes

To extract a 2D horizon curve z(x) following reflection slopes,
we expect the slopes of the horizon to be equal to the reflection
slopes:

0z(x) _
) (. o).
subject to z(xg) = zo, 3

where the slopes of the horizon z(x) are computed as the first deriv-
atives on the left side. The reflection slopes p on the right side are
precomputed from the seismic image using structure tensors. The
seed point (xg, zy) defines a position at which the horizon must pass
through.

A direct way to solve the above equation 8 is to start with the seed
point (xy, zg) and recursively accumulate the local reflection slopes:

2(xip1) = z2(x) + p(x,2(x;)), i€{0,1,2, ..., m—1},
9

where x,, defines a bound where the horizon will end. Such a direct
way of slope-based horizon picking is highly efficient to pick the
horizons (yellow curves) shown in Figure 3a, where the red circles
denote the seed points for the horizons.

However, this recursive accumulation method is path-dependent
in picking a 3D horizon surface. The picked horizon can signifi-
cantly vary with different accumulation paths, and errors will propa-
gate with the path to yield a highly unstable horizon, if the estimated
slopes contain noise. Because of the error propagations, all the hori-
zons except the top one in Figure 3a keep going further away from
the correct positions when growing the horizons away from the seed
points. Another disadvantage of this method is that it is inconven-
ient to incorporate multiple seed points into this method to generate
a single horizon conforming to all of the points.

Least-squares horizons with local slopes

A more stable way of slope-based horizon picking is to compute
a weighted least-squares fit of the horizon slopes with the preesti-
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mated reflection slopes (Lomask et al., 2006; Wu and Hale, 2013,
2015; Zinck et al., 2013). In cases in which the estimated reflection
slopes are highly noisy, we can further impose smooth regulariza-
tions on the horizon and build the following equations for the 2D
slope-based horizon extraction:
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Figure 1. (a) From a 2D seismic image, we use structure tensors to
simultaneously estimate (b) linearity and (c) slopes of seismic reflec-
tions. The linearity highlights reflection discontinuities with relatively
low values. (d) The slopes locally follow laterally continuous reflec-
tions, but they fail to correlate reflections across faults, where we can
use DTW to directly correlate seismic traces on the opposite sides of
the faults.
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where the weighting map 0 < w(x, z) < 1 represents some kind of
quality measurement of the estimated reflection slopes. We define
such a quality map with the reflection linearity image shown in Fig-
ure 1b. In the linearity image, the relatively low values are mostly
apparent in areas with noise or discontinuous reflections, where
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Figure 2. Two seismic traces are correlated by DTW.
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Figure 3. (a) A 2D seismic image is displayed with five horizons
that are extracted by predictively following local slopes, (b) least-
squares fitting of only local slopes, and (c) least-squares fitting of
local slopes and multigrid correlations, respectively.
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reflection slopes are often poorly estimated. The second equation is
a regularization term to impose smoothness on the horizon to be
computed, and p is a small constant (¥ = 0.001), which gives a
trade-off between smoothness and honoring local slopes.

Note that the weight w(x, z(x)) and slope p(x, z(x)) on the right
side are dependent on the unknown horizon z(x), which means that
equation 10 is nonlinear. As we initially do not know the correct
position of the horizon, we must start with some user-defined initial
guess of the horizon z(x) and then iteratively update the horizon as
follows:

W(x’zi)azﬁ’;);l ~ {W(X,Z,-)p(x,z,-)]. (11)

0

2,
[Y Litl

H ox?

In this iterative scheme of computing the horizon z;,| = z;,(x) at
the ith iteration, we use the weights w(x, z;(x)) and reflection slope
p(x, z;(x)) on the previously updated horizon z; = z;(x) to define
equation 11. We can rewrite it in the matrix-vector form as follows:

WDz, . | _ | Wip;
|:MDxxzi+l :| B |: 0 ' (12)

where the diagonal matrix W; contains the weights, vector p; con-
tains the reflection slopes, and matrices D, and D, represent finite-
difference approximations of the first and second derivatives, re-
spectively. To update horizon z;,; at the ith iteration, we compute
the least-squares solution to the above equation by solving the cor-
responding normal equation as follows:

(DIW%D)C —+ /’tzD;lr—xDxx)ziJrl = D;crwlzpt (13)

In this iterative scheme of computing a horizon, we begin with an
initial horizon and solve a sequence of such a least-squares equation 13
to iteratively update the horizon until the average updating is smaller
than some small threshold(1/N) >N |zi41(x;) = zi(x;)| < . As
discussed by Wu and Hale (2015), multiple control points can be
conveniently incorporated as hard constraints into this method by
solving the following constrained equation at each iteration:

(DIW%DX + /’tzD]c—xDxx)zi+l = D:vrwzzpl’
subject to z; 1 [k.] = z.,c ={1,2, ..., K}, (14)

where k. represent the indexes corresponding to the lateral positions
of the control points and z.. are the known depth positions of the con-
trol points. As discussed by Wu and Hale (2015), such a constrained
least-squares problem can be efficiently solved by using a conjugate
gradient solver with a constraint preconditioner and starting with an
initial horizon passing through the control points.

The iterative scheme of 2D horizon picking (equation 11) can be
easily extended for iteratively computing a 3D horizon surface
Zitl (X Y ) :

9ziy1

wlx. 3. 2i) 5 w(x,y,2;)p(x,¥.2)
9ziy1 )

winyz) 5t | | wixy,z)g(x .z
2, 2,
(%) 0

. (15)

where p(x,y,z;(x,y)) and g(x,y, z;(x,y)), respectively, represent
the precomputed inline and crossline reflection slopes that are ex-
tracted on the positions of the previously updated horizon surface
zi(x,y). Similar to what we do for 2D horizon picking, we compute
the least-squares solution of this equation 15 and incorporate con-
trol points by solving the following constrained equation:

(GTW?G + ’L'L)z;,., = GTW?p,,
subject to z;,[k.] = z.,c ={1,2, ...,K}, (16)

where G and L are matrices representing the finite-difference ap-
proximations of 2D gradient and Laplace operators, respectively.

By using the 2D iterative scheme of least-squares fitting of slopes
(equation 14), we compute the five horizons (yellow curves) with one
or two control points (red cycles) as shown in Figure 3b. In comput-
ing a horizon with only one control point, we start with an initial
horizon that is a horizontal line passing through the control point.
In computing a horizon with two or more control points, we start
with an initial horizon that is a curve interpolated from the control
points. All these horizons converge to the final positions (shown in
Figure 3b) after five iterations. We observe that these horizons are still
not accurately extracted because the estimated slopes cannot correctly
correlate reflections across faults. However, these horizons are closer
to the correct positions than those computed in Figure 3a.

Figure 4a shows another 2D example, which is also complicated
by many faults. The cyan segments in Figure 4b represent the esti-
mated slope vectors, which, again, locally follow the continuous
reflections, but they fail to correlate the reflections across faults.
Figure 4c shows the iterative horizon extraction, where we begin
with an initially horizontal line (blue line) passing through the con-
trol point (the yellow circle) and then gradually update the horizon
by fitting the horizon slopes with the reflection slopes in the least-
squares sense at each iteration. The horizons updated at the third
(the orange curve), fourth (the magenta curve), and fifth (the red
curve) iterations are overlaid with each other, which means that the
horizon already converges at the fourth iteration. However, this fi-
nally updated horizon does not converge to the correct position
because of slope errors near the faults. In the next section, we will
discuss how to further improve the iterative horizon extraction (Fig-
ures 3¢ and 4d) by incorporating spatially more global constraints
computed from lateral multigrid correlations.

LEAST-SQUARES HORIZONS WITH MULTIGRID
CORRELATIONS

Because local reflection slopes, computed from structure tensors
or other methods (e.g., Fomel, 2002; Marfurt, 2006; Yu et al., 2013;
Arias, 2016), are often inaccurate in discontinuous areas with noise,
chaotic reflections, or faults, the horizon extraction method based
on only local slopes often fail to correctly follow reflections across
these areas, as shown in Figure 3a and 3b. However, the reflections
across these areas can be correctly followed by directly correlating
the seismic traces on the opposite sides of the discontinuous areas,
as shown in Figure 1d. Based on these observations, we improve the
iterative horizon extraction (Figures 3c and 4d) by fitting a horizon,
in the least-squares sense, with the local reflection slopes and spa-
tially more global reflection correlations.
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Multigrid correlations

As shown in Figure 3a, by starting from seed points and recur-
sively following or accumulating local reflection slopes, we may
fail to correctly track the reflections far away from the seed points.
Therefore, to correlate reflections that are spatially far away from
each other, we also directly correlate the seismic traces in laterally
coarser grids, as shown in Figure 1d.
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Figure 4. (a) A 2D seismic image is displayed with (b) local slope
vectors, (c) five iterations of a horizon computed by least-squares
fitting with only local slopes, and (d) local slopes and multigrid
correlations.

Figure 5 displays pair-wise correlations of seismic traces in multiple
laterally coarse grids of the example shown in Figure 4. In this exam-
ple, we totally have 380 traces in the lateral inline direction. We first
choose laterally sparse traces s;(z) (j € J = {0.,20,40, ...,380}),
one for every 20 traces, as shown in Figure 5a. We then compute
pair-wise correlations of these traces by using DTW, similar in com-
puting pair-wise well-log correlations discussed by Wheeler and
Hale (2014). To reduce computational cost, we do not compute
all possible pair-wise correlations as discussed by Wheeler and Hale
(2014). Instead, we only compute correlations of those pairs de-
noted by the black curves in Figure Sa—5c, where the lateral distance
of each pair (s;(z) and s,(z), k,l € J) are |l — k| =20 traces
(Figure 5a), |l — k| = 40 traces (Figure 5b), and |/ — k| = 60 traces
(Figure 5c), respectively. As denoted by the blue curves in Fig-
ure 5d, we also compute pair-wise correlations of the reference trace
(at the control point) with all the other traces in the coarse grid with
an interval of 20 traces. We compute the correlation of each pair of
traces by using DTW (Hale, 2013), as shown in Figure 2.

To improve the efficiency of the pair-wise correlations, we do not
vertically correlate the traces in the entire sampling range of depth
or time. Instead, we compute correlations of the traces only in a
small depth window centered at the horizon. The cyan curve in Fig-
ure 6a shows the horizon updated at the first iteration. The vertical
yellow or red segments represent vertical depth windows, each of
which contains only 70 depth samples and is vertical centered at the
horizon. Horizontally, these depth windows are evenly placed in a
coarse grid of every 20 traces. We extract seismic traces within these
depth windows and flatten the traces with the centered cyan horizon
z;(x) to obtain the flattened traces s;(z) shown in Figure 6b, where 7
represents the vertical axis in the flattened space.

With these flattened short traces, we compute their pair-wise cor-
relations within horizontally multiple coarse grids, as illustrated in

a) Trace number
0 40 80 120 160 200 240 280 320 340 380

oo T TR

Pairwise correlations in 1st grid

b) Trace number
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Figure 5. The black curves in (a-c) denote the pair-wise correla-
tions of seismic traces on multiple coarse grids, where the lateral
distances of each pair in (a-c) are 20, 40, and 60 traces, respectively.
The blue curves in (d) denote pair-wise correlations of the reference
trace (denoted by the yellow circle) with all the other traces.
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Figure 5. We compute each pair-wise correlation of the traces using
DTW as shown in Figure 2. From the relative correlation shifts u; ;(z)
computed for each pair of traces (s;(7) and s,(z), k, ! € J) within
multiple coarse grids |/ — k| = 20, 40, or 60, we are able to estimate
the corresponding multigrid reflection slopes py ;(z).

In equation 11 of updating a horizon at each (i 4 1)th iteration,
we only need to compute slopes at the previous horizon z;(x) up-
dated at the ith iteration. Therefore, with the relative shifts u; ;(z)
of the multigrid pair-wise correlations, we also compute the corre-
sponding multigrid slopes p;;(z;) only at horizon z;(x):

0 . — 7
pkl( ) ukll(_k )+ZI(XI3_IZCZ(Xk)9 (17)

where x;, = k and x; = [ represent the lateral (inline or crossline)
indexes of the seismic traces extracted on a laterally coarse grid
k,1 e J =10,20,40, ...,380} as shown in Figures 5 and 6. The
term u; (7 = 0) represents the correlation shifts at the horizon z; in
the flattened space, where the horizon is flattened as a horizontal
line at 7 = 0 (the colorful horizontal line in Figure 6b—6f). As the
pair-wise correlations are computed in the flattened space, the hori-
zon slope ([z;({) — z;(k)]/(I — k)) is added to the correlation shifts to
obtain the multigrid slopes py ;(z;) in the original (unflattened) space.
As illustrated in Figure 5d, we also compute pair-wise correla-
tions between the reference trace s.(z) and all the other traces
5;(t),j € J in the flattened space 7. Reference trace s.(7) is the
seismic trace containing the control point and colored by red in Fig-
ure 6b—6f. Similarly, by using the pair-wise correlation shifts u,. ;(z)
of the reference and all the other traces, we can compute the cor-
responding coarse-grid slopes p. ;(z;) at the horizon z;(x) as

Mc,j(T =0) 4 Zi(xj) - zi(x,)
j—c¢ j—c¢ '

Pejlzi) = (18)

Least-squares horizons with multigrid slopes

By incorporating the estimated multigrid slopes p;;(z;) and
P.,;(z;) into equation 11 of horizon updating, we solve the least-
squares solution of the following larger system at each iteration
to update the horizon:

0z;
w(x, z;) =52 ‘
()= (8 wlx, 2,)p(x. 2)
Aw =k g pii(z:) (19)
Iw Zi+1(]3:ii+1(c> ﬂWc,ch,j(Zi) ’
H‘)ZZHI(X) 0
0

where the first three equations indicate that we expect the horizon
slopes to be approximately equal to the local reflection slopes
p(x, z;(x)) and multigrid slopes py;(z;) and p. ;(z;). The function
A is a small constant number used to balance the first three equa-
tions. The weights wy; and w, ; are defined as

wik, zi(k)) + w(l, zi(1))
2

Wi = (20

and

w(e, z;(c)) ; w(/, Zi(j)). Q1)

Wej =

In equations 19, the local reflection slopes and multigrid slopes
are independently estimated using structure tensors and pair-wise
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(yellow and red segments) that are centered at the iteratively updat-
ing horizon (cyan curve in [a] denote the horizon at the first iter-
ation). These traces are flattened by the updating horizon at the
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the flattened horizon (red line) in the middle consistently passes
through all the troughs.
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correlations; these slopes will provide independent and multiscale slopes will be helpful to correct the errors and find the correct cor-
constraints in updating the horizon. In cases in which the local slopes relation of the reflections across faults as shown in Figure 1d.
cannot correctly follow reflections across faults, the coarse-grid By instituting the coarse-grid slope equations 17 and 18 into the

above equation 19, we can simplify this equation 19 as

Inline (trace number) Inline (trace number) Inline (trace number)
0 100 200 300 0 100 200 300 0 100 200 300

Time (sample)

Figure 7. (a) A 2D seismic image is displayed with horizons that are extracted by comput-
ing (b) the least-squares fit of only local slopes and (c) local slopes and multigrid corre-
lations, respectively. With multigrid correlations, we are able to correctly extract horizons
across faults without the need of detecting fault positions and estimating fault slips.

a) Inline (trace number)
800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800
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Figure 8. (a) Because of the numerous faults in the seismic image, the method with only
local slopes (equation 11) fails to accurately extract horizons as shown in (b). By using
the method with multigrid slopes (equation 19), the extracted horizons in (c) accurately
follow consistent phase (peaks or troughs) and correctly track reflections across faults
without picking the faults and estimating fault slips.

w(x, z;) 33-;1

wglzipr (1) = zig1 (k)]

e jlzin1 () = zipa ()]
aZZH-l(x)

ox?

(22)

Figure 4b and 4c, respectively, shows the five
iterations of horizon extraction using only local
slopes (equation 11) and multigrid slopes (equa-
tion 22). With only local slopes, the horizon in
Figure 4b stops updating at the third iteration
but it does not converge to the correct position.
This indicates that the iterative horizon updating is
stuck at a local minima due to the local slope er-
rors near faults. With multigrid slopes, the horizon
in Figure 4c keeps updating until it converges to
the correct position at the fifth iteration, where the
coarse-grid slopes or correlations provide laterally
global correlations across faults to correct local
slope errors near faults. The third equation is also
trying to correlate all the reflections of a horizon to
the reflection at the control point, which is helpful
to avoid error propagation in directions away from
the control point.

Figure 6b—6f shows the five iterations of the
updating horizon with multigrid slopes and the
seismic traces on a laterally coarse grid with an
interval of 20 traces. These traces are centered
at the updating horizon at each iteration and
are flattened by the horizon, which is flat in Fig-
ure 6b—6f. Within these five iterations shown in
Figure 6b—6f, we can observe that the seismic
traces are gradually aligned to the reference trace
(the 180th trace denoted in red in Figure 6) at the
control point (denoted by the yellow circle in
Figures 4 and 6a). At the final iteration (Figure 6f),
all the seismic traces are horizontally aligned. This
means that the correlation shifts (u;;(r) and
u, ;(7) in equations 17 and 18) of these traces will
be equal to zeros; then, we have z;,(/)—
zip1 (k) = zi(1) = zi(k) and z;41(c) — 211 (J) =
zi(¢) = z;(j) in equation 22, which indicates that
the horizon is already converged because the
multigrid slopes of the horizon at the (i + 1)th
and ith iterations are already identical and no
more updates are required. We also observe the
final horizon (the red line flattened in Figure 6f)
consistently passes through all troughs of the
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traces, which indicates that the multigrid slopes computed by DTW
are also helpful to compute horizons following a consistent seis-
mic phase.

Extending the horizon extraction with multigrid slopes from two
dimensions to three dimensions is quite straightforward. In 3D
cases, we compute the pair-wise correlation of seismic traces within
multiple coarse grids in the inline and crossline directions to esti-
mate multigrid inline and crossline slopes, with which we solve the
least-squares solution of the following equations at each iteration to
update the horizon z;(x, y):

w(x, y, z;) %t

wix,y, 27) w(x,y,2:)p(x.,2) ]
(v, zi) = vy zatv. <)
A ’ ziqi(e yl)__];wl(j}) kaI(y, )pkl(y’ )
we (9, 2i) =" ~ | we (5. 20)pe (V. 2i) |
Awk’,(x,zl)w Awg (X, 2:)qr (%, 2;)
ﬂWC,j(X,Z )Zm(x .©) ::H(X]) AWC](X, l)ch( . 2i)

dzZtH ‘)ZZJ[H - 0 -

ﬂ( 02 + 9y )

(23)

where py (v, z;) and g (x, z;), respectively, represent the coarse-
grid slopes computed from the pair-wise correlations of traces on
lateral coarse grids (j,y) and (x, j) in the inline and crossline di-
rections, respectively. j € J = {0,20,40, ...} and the lateral dis-
tances of the pairs k, ! € J are defined as |/ — k| = 20, 40, and 60.
In practice, we can choose different lateral coarse grids (j,y) and
(x,j) with j € J ={0,10,20,30, ...} and different distances of
the pairs, for example |/ — k| = 10, 30, 40, and 60. Compared with
the 3D horizon surface extraction with only local slopes in equa-
tion 15, a lot more equations from multigrid slopes are incorporated
to provide laterally global constraints for horizon extraction.

APPLICATIONS

The 2D examples in Figures 1 and 4 already show that the pro-
posed method with local reflections slopes and multigrid slopes
or correlations can generate much more accurate horizons across
faults than the conventional method with only local slopes. To further
demonstrate the superiority of the method with multigrid slopes com-
pared with the one with only local slopes, we apply the methods to
more 2D and 3D examples complicated by faults.

2D applications

Figure 7a shows a 2D seismic image extracted from the Teapot
Dome survey, which was provided by the Rocky Mountain Qilfield
Testing Center. The structures in this seismic image are quite sim-
ple, but the two faults (the dashed yellow lines Figure 7a) still make
the method with only local slopes (equation 11) fail to correctly
extract horizons (the yellow curves in Figure 7b) across these
two faults. By using the method with multigrid slopes, all the ex-
tracted horizons correctly follow reflections across faults as shown
in Figure 7c. In both methods, we use the same control points (de-
noted by the red circles), one for each horizon, and we did not try to
detect faults to constrain the horizon computation.

Figure 8a shows a more complicated 2D seismic image, where
numerous local faults make the reflections highly discontinuous. In
this case, the local slopes estimated from structure tensors or other
methods will fail to follow these laterally discontinuous reflections.
Due to the errors in local slopes, the horizons (especially the first,
second, and sixth horizons in Figure 8b) extracted by fitting only
local slopes completely fail to track geologically consistent reflec-
tions. However, by using the method with multigrid slopes, we are
able to accurately extract all the horizons in Figure 8c without the
need of detecting faults and estimating fault slips. We can observe
that all the extracted horizons in Figure 8c accurately follow con-
sistent phases such as peaks or troughs.

3D applications

Figure 9 shows a 3D subset (951 [inline] X 550 [crossline] x 242
[time] samples) of the Netherlands offshore F3 block seismic data.
This 3D seismic image is complicated by faults and salt bodies at
the bottom of the image. The yellow and black arrows denote the
two horizons that we expect to extract using the methods with only
local slopes and multigrid slopes.

The first horizon (denoted by the yellow arrows in Figure 9) is
complicated by a large fault (denoted by the yellow line in Figure 9)
and a lot of dewatering faults, which make the horizon highly dis-
continuous. By using the method with the least-squares fitting of only
local slopes (equation 15), we extract the horizon surface in Fig-
ure 10a (colored by amplitudes) with one control point (denoted
by the small green cube in Figure 10a). This extracted horizon follows
the general structure trend, but we can observe significantly amplitude
variations on the surface. Because the control point is picked at an
amplitude trough, we expect the horizon surface to pass through am-
plitude troughs and the surface should be colored red (negative val-
ues) everywhere. The blue areas on the horizon surface (Figure 10a)
indicate that the extracted horizon does not correctly follow seismic
amplitude troughs and jumps to peaks within these areas. By using
the method with least-squares fitting of the local reflection slopes and
multigrid slopes (equation 23), we compute a horizon surface shown

Figure 9. A 3D seismic image with faults (yellow line) and salt bodies
(at the bottom of the image). The yellow and black arrows denote the
two horizons that we want to extract.
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in Figure 10b. This extracted horizon is colored red almost every-
where, which indicates that this horizon follows consistent troughs
and is much more accurate than the one shown in Figure 10a. On
the extracted horizon shown in Figure 10b, we can clearly observe
a lot of discontinuous dewatering structures, but the horizon still rea-
sonably follows the seismic amplitude troughs as expected.

The second horizon (denoted by the black arrows in Figure 9) is
complicated by the large fault (denoted by the yellow line in Fig-
ure 9) and a large salt body at the bottom of the image. To extract

this horizon surface, we use two control points (denoted by the
small green cubes in Figure 11) on two sides of the salt body. Fig-
ure 11a shows the horizon surface computed by using the method
with only local slopes (equation 15). This extracted horizon, again,
is not accurate enough because we can observe blue and red areas
on the surface, which indicates that the horizon jumps from troughs
to peaks. The two control points are, again, picked at amplitude
troughs, an ideal horizon should constantly follow amplitude
troughs and therefore should be colored red almost everywhere.

Figure 10. From the 3D seismic image (Figure 9), the two horizon surfaces in (a and b) are computed by using the methods with only local
slopes and local slopes and multigrid correlations, respectively. Both of the surfaces are computed by using one control point denoted by the
green point. Both of the surfaces are colored by amplitude, and the amplitude values on the surface in (b) are more consistent than those on the

surface in (a).

Figure 11. From the 3D seismic image (Figure 9), the two horizon surfaces in (a and b) are computed by using the methods with only local
slopes and local slopes and multigrid correlations, respectively. Both of the surfaces are computed by using two control points denoted by the
green points on the two sides of a salt body. Both of the surfaces are colored by amplitude, and the amplitude values on the surface in (b) are

more consistent than those on the surface in (a).
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In Figure 11b, the method with local reflection slopes and multigrid
slopes yields such an ideal horizon that we expect. We can observe
that this horizon is complicatedly folded by the salt body and the
large faults related to the salt body, but the computed horizon Fig-
ure 11b still reasonably follows seismic amplitude troughs and is
colored red almost everywhere.

The method with local slopes and multigrid slopes is computa-
tionally more expensive than the one with only local slopes because
the former requires computing multigrid slopes at each iteration and
solving a larger least-squares system. In this example, the method
with only local slopes took approximately 1 min to compute each of
the horizons shown in Figures 10a and 11a by using an eight-core
computer. By using the same computer, the method with local
slopes and multigrid slopes took approximately 3 min to compute
each of the horizons shown in Figures 10b and 11b.

Figure 12a shows another large 3D seismic volume (880 (inline)
X 1325 (crossline) x 500 (time) samples) provided by the Reservoir
Characterization Research Laboratory (RCRL consortium at the
Bureau of Economic Geology), who purchased the data from Aus-
tralian Government-Geoscience Australia. This seismic volume is
complicated by dramatically varying foldings caused by channel
valleys as shown in the vertical sections. Figure 12b shows a hori-
zon surface that is extracted by using the method with multigrid

sline
a) amples_, GO

300

0 1
Amplitude

Figure 12. (a) From the 3D seismic image, (b) a horizon surface is
computed by using only one control point (green point in [b]) in the
method with local slopes and multigrid correlations. This surface is
colored by seismic amplitude.

slopes and using only one control point (denoted by the small green
cube) picked at an amplitude peak. This extracted horizon surface is
colored by white almost everywhere, which indicates that the hori-
zon reasonably follows amplitude peaks. From this horizon surface,
we can clearly observe a lot of interesting geologic features includ-
ing large canyons, relatively smaller channels, and alluvial fans.

CONCLUSION

‘We have discussed iterative horizon extraction methods based on
local reflection slopes and multigrid slopes or correlations. At each
iteration of the methods, we fit, in the least-squares sense, the slopes
of a horizon with local reflection slopes and multigrid slopes.

We estimate the local reflection slopes on a fine grid by using the
structure-tensor method. The local slopes can correctly follow lat-
erally continuous reflections but fail to correlate reflections across
faults. In addition, these local reflection slopes do not necessarily
follow consistent phases and may jump from peaks to troughs (or
troughs to peaks). We estimate multigrid slopes by directly corre-
lating seismic traces on multiple laterally coarse grids using DTW.
When the traces on the coarse grids are located on the opposite sides
of a fault, the correlations of these traces can be helpful to correctly
track corresponding reflections on the opposite sides of a fault. In
addition, by using the amplitude-based DTW, the computed multigrid
slopes or correlations can provide more accurate phase correlations
than the local reflection slopes to compute a horizon following con-
sistent phase. To increase the efficiency of estimating the multigrid
slopes, we do not correlate seismic traces within the whole time or
depth window; instead, we only correlate the traces in a small time or
depth window centered at the iteratively updating horizon.

By least-squares fitting, the horizon slopes with only local reflec-
tion slopes, the horizon extraction method fails to track horizons
across faults because the local slopes cannot correctly correlate re-
flections across faults. Therefore, we suggest to fit the horizon
slopes with the local reflection slopes and multiple coarse-grid
slopes. Near the faults where local slopes fail to follow reflections,
we weight the slopes with low-reflection linearity or planarity that is
computed at the same time as estimating the reflection slopes by
using structure tensors. The coarse-grid slopes that correctly corre-
late reflections on the opposite sides of the faults will contribute
the most in the least-squares fitting to yield an accurate horizon that
correctly tracks reflections across faults and follows consistent phase.
This horizon extraction method with local slopes and multigrid slopes
can be further extended to flatten a seismic volume to simultaneously
obtain all seismic horizons within the volume.
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