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Abstract

Well-log correlation is a crucial step to construct cross sections in estimating structures between wells and
building subsurface models. Manually correlating multiple logs can be highly subjective and labor intensive.
We have developed a weighted incremental correlation method to efficiently correlate multiple well logs fol-
lowing a geologically optimal path. In this method, we first automatically compute an optimal path that starts
with longer logs and follows geologically continuous structures. Then, we use the dynamic warping technique to
sequentially correlate the logs following the path. To avoid potential error propagation with the path, we modify
the dynamic warping algorithm to use all the previously correlated logs as references to correlate the current log
in the path. During the sequential correlations, we compute the geologic distances between the current log and
all of the reference logs. Such distances are proportional to Euclidean distances, but they increase dramatically
across discontinuous structures such as faults and unconformities that separate the current log from the refer-
ence logs. We also compute correlation confidences to provide quantitative quality control of the correlation
results. We use the geologic distances and correlation confidences to weight the references in correlating the
current log. By using this weighted incremental correlation method, each log is optimally correlated with all the
logs that are geologically closer and are ordered with higher priorities in the path. Hundreds of well logs from
the Teapot Dome survey demonstrate the efficiency and robustness of the method.

Introduction
Well-log correlation aims to identify corresponding

depth samples among well logs. Each set of such cor-
responding samples belongs to the same geologic layer
with similar rock properties (Wheeler and Hale, 2014).
Manually identifying multiple sets of corresponding
samples among many well logs is highly labor intensive
and subjective. Therefore, computer-based automatic
methods have been proposed to correlate single pairs
of logs and multiple logs.

The earliest automatic methods (e.g., Rudman and
Lankston, 1973; Mann and Dowell, 1978) use the cross-
correlation algorithm to compute shifts that correlate
a single pair of logs. The crosscorrelation algorithm,
however, is accurate only to estimate slowly varying
shifts. Therefore, some authors (e.g., Smith and Water-
man, 1980; Waterman and Raymond, 1987) propose to
use a dynamic waveform matching method to better
estimate rapidly varying shifts. Such a dynamic warp-
ing method is further improved by incorporating
human interpretations (e.g., Lineman et al., 1987;
Wu and Nyland, 1987; Lallier et al., 2012, 2016) and
seismic constraints (Julio et al., 2012) into well-log
correlations.

The crosscorrelation and dynamic warping methods
can be directly applied for correlating multiple well logs
by choosing a reference and then independently align-
ing all the other logs to the reference (Le Nir et al.,
1998). This independent pair-wise correlation method,
however, is not able to compute consistent and globally
optimal correlations of multiple logs. Fang et al. (1992)
compute three pairwise correlations among a cycle of
three logs and repeatedly perform such a three-pass
cycle processing to obtain multiple-log correlations.
Wheeler and Hale (2014) first compute shifts for all
possible pair-wise correlations among multiple logs
without choosing a correlation path, and then they
compute the least-squares fit of the shifts to obtain
consistent correlations of the logs. Lallier et al. (2016)
sequentially compute pair-wise correlations following a
path, and then they iteratively reduce inconsistent cor-
relations until a stable and minimal cost correlation is
achieved.

In this paper, we present a highly efficient method, as
shown in Figure 1, to compute robust correlations of
multiple well logs. First, we discuss how to compute
a geologically optimal path that starts with longer logs,
follows shorter distances, and avoids faults and uncon-
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formities. In computing such an optimal path, we con-
struct a pseudovelocity map by taking into account a
seismic structural discontinuity map and a smoothed
log-length map. From the pseudovelocity map, we solve
for an eikonal equation to compute a traveltime map,
which is further used to sort the logs in a geologically
reasonable order. Then, we discuss an incremental
correlation method to use an increasing number of pre-
viously correlated logs as references to correlate a sub-
sequent log in the correlation path. In correlating the
current log to the multiple references, geologically
closer references are weighted more than the further
ones that are separated from the current log by faults
and unconformities. We also discuss how to compute
correlation confidences to quantitatively evaluate the
correlation results. Such confidences are also used to
weight the references (previously correlated logs) for
correlating the current log. Finally, we apply a similar
incremental correlation method to simultaneously com-
pute consistent correlations of multiple types of logs.

Geologically optimal path
Sequentially correlating multiple well logs is effi-

cient, but it often requires an optimal path to obtain
reliable results. An optimal path should start with rela-
tively long logs and follow geologically continuous
structures.

Figure 2 shows the method that we use to compute
such an optimal path for the 165 density logs (the yel-
low circles in Figure 2a) of the Teapot Dome survey.
In this method, we first count the number of samples
in each log to compute a normalized log-length map

(Figure 2b), which is further smoothed by applying a
Gaussian smoothing filter with a smoothing half-width
sigma ¼ 10 (samples). In this smoothed and normalized
log-length map lðxÞ(Figure 2c), the logs with relatively
longer length are denoted by higher values (white col-
ors). The log length will be an important consideration
in properly ordering the logs for a sequential correlation
method. We expect the relatively longer logs (with geo-
logically more complete rock properties) to be ordered
at the beginning in a sequential correlation method be-
cause these beginning logs will serve as references for
correlating the subsequent logs. However, log length is
not the only consideration of choosing a proper corre-
lation order of the logs. For example, in Figure 2b, the
longest log is denoted by the red arrow, but we may not
want to choose it as the reference at the very beginning
because it is located at the edge of the survey and is far
away from all the other logs. The Gaussian smoothing
applied to the log length map helps to take into consid-
eration the length of the nearby logs and avoid choosing
the outlier longest log as the reference to start with.
After the Gaussian smoothing, the smoothed longest
logs are now located in the middle of the survey, as de-
noted by the red circle in Figure 2c.

A proper correlation path should also avoid passing
across structural discontinuities. We use a correspond-
ing 3D seismic image to compute the attributes, such
as coherence (Marfurt et al., 1999), fault likelihood
(Hale, 2013b; Wu and Hale, 2016), and unconformity
likelihood (Wu and Hale, 2015), that can highlight struc-
tural discontinuities including faults and unconform-
ities. We stack the 3D attribute volume vertically
over time or depth to obtain a 2D spatial map of the
structural discontinuities. As an example, we compute
a 3D fault-likelihood image from the 3D Teapot Dome
seismic image and we vertically stack the likelihood im-
age to obtain a map dðxÞ of fault zone show in Figure 2d.
Such a discontinuity map is also normalized such
that 0 ≤ dðxÞ ≤ 1.

With these two maps, the log length (lðxÞ) and seis-
mic structural discontinuities (dðxÞ), we further define
a pseudovelocity map by vðxÞ ¼ lðxÞ½1 − dðxÞ� (Fig-
ure 2e), where relatively higher values denote areas
with longer logs and more continuous structures. To
compute a path following longer logs and more continu-
ous structures, we place a wave source (the red circle in
Figure 2e) at the position with the highest velocity and
we propagate the wave in this velocity map to compute
a traveltime map by solving the following eikonal equa-
tion:

∇tðxÞ · ∇tðxÞ ¼ 1

v2ðxÞ : (1)

We compute the traveltime map tðxÞ (Figure 2f) by
solving a finite-difference approximation to the above
eikonal equation using an iterative algorithm similar to
that discussed by Jeong et al. (2007) and Hale (2009).
In this traveltime map (Figure 2f), the black curves

Figure 1. The workflow of the proposed methods to first or-
der well logs in a geologically reasonable path and then se-
quentially correlate the logs using a weighted incremental
correlation method.
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denote traveltime contours or wave-
fronts, which generally follow the high
velocity values in Figure 2e.

From this computed traveltime map,
we can extract traveltimes at all the
well-log positions; smaller times should
correspond to longer log lengths, more
continuous structures, and shorter dis-
tances from the source position. There-
fore, we can simply sort all the logs
(Figure 3a) by their corresponding trav-
eltimes to order the logs in a geologi-
cally optimal path that starts with
longer logs, follows shorter distances,
and avoids discontinuous structures,
such as faults and unconformities. With
this method, the randomly ordered logs
in Figure 3a are ordered in Figure 3b,
where the longer ones have been re-
arranged with higher priorities on left
and will be correlated earlier. We can
also observe that the density measure-
ments are laterally more continuous in
the optimally ordered logs (Figure 3b)
compared with those in the randomly
ordered ones (Figure 3a). Figure 4a
shows the same density logs but are
poorly ordered, where the short logs
are ordered at the beginning, whereas
the relatively long logs are ordered at
the end. In the next section, we will ap-
ply the same correlation method to the
optimally (Figure 3b) and poorly (Fig-
ure 4a) ordered logs for comparison.

Although the logs are ordered in a
geologically optimal path, it can still
be challenging to obtain accurate corre-
lations of the logs using a sequential cor-
relation method. The missing data and
measurement errors within the logs
may generate correlation errors, which
can propagate and accumulate with
the path. In addition, the logs ordered
close to each other in this geologically
optimal path can be spatially far away
from each other. In the next section,
we propose a weighted incremental cor-
relation method to deal with these po-
tential problems.

Weighted incremental correlation
To avoid potential error propagation

with the correlation path, we propose to
use all the previously correlated logs as
references to correlate the current log,
so that each log is optimally correlated
to all the logs with higher priorities in
the path. Because the number of refer-
ence logs increases with the correlation

Figure 2. (a) In total, 165 Teapot Dome logs are displayed on a time slice of the
corresponding 3D seismic volume. A map of the normalized length of all the logs
(b) before and (c) after Gaussian smoothing. (d) A map of a fault zone is com-
puted from the seismic fault likelihood. Maps of the (c) smoothed well-log length
and (d) a fault zone are used to define (e) a pseudovelocity map, (f) where a wave
source is placed at the position with the highest velocity to compute a traveltime
map. A geologically optimal correlation path of the logs is found by sorting trav-
eltimes at all the log positions.
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path, we call this method incremental correlation. In ad-
dition, we compute geologic distances between the cur-
rent log and all the previously correlated logs and we
use the distances to weight the references in correlating
the current log. Such distances are proportional to the
Euclidean distances between the current log and the

reference logs, but they increase dramatically across
faults or unconformities.

Weighted incremental dynamic warping
In this method of computing correlation shifts uk½i�

for each kth log f k½i�, we use all the previously corre-

Figure 3. (a) Randomly ordered density logs. (b) Geologically optimally ordered density logs. (c) The optimally ordered density
logs are correlated by using the weighted incremental correlation method, and the corresponding correlation confidences are
shown at the bottom.
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lated logs as references and solve the following con-
strained minimization:

argmin
uk½i�

XN

i¼1

Xk−1

j¼1

wj;kjf j½iþ uj½i�� − f k½iþ uk½i��jp;

subject to umin ≤ uk½i� ≤ umaxandjuk½i� − uk½i − 1�j ≤ ε;

(2)

where i ¼ 1;2; : : : ; N represents the sample index in a
well logs; f j½iþ uj½i��; j ¼ 1; : : : ; k − 1 represent all the
previously correlated logs; and uj½i� are the previously
computed correlation shifts for the jth log. The positive
exponential number p is set to be one in all examples in
this paper. The shift ranges umin and umax are defined to
be umin ¼ −250 (samples) and umax ¼ 250 (samples),
which is large enough to correlate the logs in the Teapot
Dome survey. The value ε is the shift strain, which de-
fines squeezing (uk½i� − uk½i − 1� ≤ 0) and stretching
(uk½i� − uk½i − 1� ≥ 0) (Hale, 2013a) of a well log in
correlation. In the Teapot Dome example, there are
no significant angular unconformities (missing layers)

apparent in themeasuredwell logs; therefore, we choose
a small strain ε ¼ 0.1 (−0.1 ≤ uk½i� − uk½i − 1� ≤ 0.1) to
avoid unreasonably large stretching and squeezing and
to preserve the length of the logs during the correlation.

The term wj;k denotes a weighting map that depends
on the jth and kth logs. We define such a map by
combining three factors: (1) geologic distance between
the two logs, (2) missing data in both logs, and (3) cor-
relation confidence (equation 3) of the jth log. We set
wj;k ¼ 0 when the correlation confidence of a reference
log is smaller than some threshold or either the log sam-
ple f j½iþ uj½i�� or f k½iþ uk½i�� is missing. This is helpful
to avoid using poorly correlated reference logs and
missing data for the correlation.

For other reference logs with high correlation confi-
dences, we define the weights wj;k with geologic distan-
ces that are defined as traveltimes tj;k from the current
log (f k½i�) position to the locations of all the previously
correlated logs (f j½iþ uj½i��; j ¼ 1; : : : ; k − 1). Then,
we compute a new traveltime map by placing a wave
source at the kth log position and solving the same
eikonal equation (equation 1) with the same pseudove-

Figure 4. (a) Density logs are poorly ordered with short logs at the beginning, whereas the relatively longer ones at the end.
(b) The poorly ordered density logs are correlated by using the weighted incremental correlation method.
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locity map (Figure 2e). From the new traveltime
map, we can simply extract the traveltimes tj;k at the
reference-log positions and define such traveltimes as
geologic distances between the current log f k½i� and
the reference logs f j½iþ uj½i��; j ¼ 1; : : : ; k − 1. The
extracted traveltimes or geologic distances will be pro-
portional to the Euclidean distances and will dramati-
cally increase across faults and unconformities where
the pseudo velocities are set to be significantly low
(nearly zeros). In correlating the current log to the
reference logs, we set larger weightswj;k corresponding
to smaller times tj;k so that the geologically closer refer-
ences are weighted more than those geologically fur-
ther ones that may be spatially far away from the
current log or geologically separated from the current
log by faults and unconformities.

To solve the above weighted and constrained mini-
mization, we use a dynamic programming algorithm

with three steps of computing alignment errors,
forward accumulation, and backward tracking, as
discussed by Hale (2013a). In the first step, the align-
ment error map e½i; uk� is a 2D array with respect to
the sample index (i ¼ 0;1; : : : ; N) and shift lag
(umin ≤ uk ≤ umax). Each error in this map is computed
as the summation of p norms of the differences between
the current log and all the previously correlated refer-
ence logs as defined in equation 2. To find the globally
optimal correlation shifts that minimize the objective
function in equation 2 is equivalent to finding an optimal
path that passes though globally minimum alignment er-
rors in the map e½i; uk�. However, it is often difficult to
extract such an optimal path directly from the align-
ment error map. The dynamic programming method
performs a second step of forward accumulating the
alignment errors to obtain an accumulated error map
for the minimum path picking. In this second step,

Figure 5. (a) The geologically optimally ordered gamma-ray logs are (b) correlated by using the weighted incremental correlation
method and the corresponding correlation confidences are shown at the bottom of (b).
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the strain constraint (juk½i� − uk½i − 1�j ≤ ε) is incorpo-
rated into the dynamic programming method by con-
trolling the accumulation of errors. In the forward
accumulated error map, the globally minimum path is
often more obvious than in the original error map
and can be picked by back tracking the minimum accu-
mulated errors. The same strain constraint is also incor-
porated in this back-tracking process as in the second
step of forward accumulation.

By solving such minimizations sequentially for all
logs in the path, we obtain all the correlated logs in
Figure 3c. We can observe that all the logs are visually
accurately correlated (the same layers in different logs
are all horizontally aligned), although a lot of missing
samples and noisy or singular values (e.g., the blue col-
ors in Figures 3) are apparent in many of the logs. We do
not try to detect these noisy values, and
we eliminate them during the correla-
tion. Using weights andmultiple referen-
ces in the incremental correlation
method is helpful to reduce the influ-
ence from these noisy values.

In Figure 4b, we apply the same cor-
relation method to correlate the same
density logs, which, however, are not
properly ordered as in Figure 4a. We ob-
serve that this correlation method still
works well to reasonably correlate most
of the density logs, especially these
shallow ones. The misalignments of the
logs, denoted by arrows in Figure 4b,
are caused by the poorly chosen correla-
tion path, where the reference logs on
the left are short ones containing only
the shallow rock properties. The mis-
aligned logs, however, contain only the
deep properties but miss the shallow
properties and are therefore not able to
be accurately aligned to the reference
logs. This problem was solved by more
reasonably order the correlation logs
as shown in Figure 3b.

Correlation confidence
To provide a quantitative quality con-

trol of each correlated log f k½iþ uk½i��,
we compute a correlation confidence
ck by averaging the zero-lag crosscorre-
lations of this log and all the previously
correlated logs (f j½iþ uj½i��; j ¼ 1; : : : ;
k − 1):

ck ¼
1

k − 1

Xk−1

j¼1

hf j; f ki2
hf j; f jihf k; f ki

; (3)

where hx½i�; y½i�i denotes the dot prod-
uct between two sequences of ½x½i��
and y½i�, f j ¼ f j½iþ uj½i�� represents

the previously correlated logs, and f k ¼ f k½iþ uk½i��
represents the currently correlated log whose confi-
dence is to be computed. The black curve at the bottom
of Figure 3c shows the computed correlation confiden-
ces for all correlated logs. The confidences of most logs
are higher than 0.8, which indicates these logs are well-
aligned as shown in the image above the confidence
curve. The two relatively low confidence values (the
dashed vertical lines in Figure 3b) highlight the corre-
sponding two logs, which are not well-aligned.

Using the same incremental correlation methods, we
also automatically correlate the gamma-ray (Figure 5)
and velocity (Figure 6) logs measured in the Teapot
Dome survey. We observe that most of these logs are
also well-aligned (Figures 5b and 6b) and their corre-
sponding correlation confidences are larger than 0.8.

Figure 6. Geologically optimally ordered velocity logs (a) before and (b) after
correlation. (b) Horizontal lines in the correlated logs correspond to (c) geologic
horizons in the original logs.
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The low-confidence logs are denoted by the vertical
dashed lines in Figure 5b. The misalignments and low
correlation confidences of these logs are caused by their
large measurement errors (17th, 76th, and 102th logs)
and missing data (all the other logs highlighted by verti-
cal dashed lines in Figure 5b). Although some of these
logs are correlated relatively earlier, these logs are not
used as references for the subsequent correlations. In
these examples, we set the weightswj;k ¼ 0 in equation 2
when the correlation confidences are smaller than 0.8 to
filter out these unreliably correlated logs.

After the well-log correlation, all of the logs are
mapped to the relative geologic time (RGT) domain,
in which the geologic layers in all the logs are horizon-
tally aligned. It is convenient to pick horizons across well
logs in this RGT domain and map them back to the origi-
nal depth domain to construct lithostratigraphic cross
sections. As shown in Figures 3c, 5b, and 6b, the vertical

axis of the correlated logs represents RGT, which means
that horizontally aligned samples of different logs
correspond to a same geologic time and belong to the
same geologic layer. We can simply draw horizontal
lines, as in Figure 6b, to pick geologic horizons across
multiple logs in this RGT domain. Then, we can simply
add the computed correlation shifts to the RGT of these
horizontal lines to obtain the corresponding horizons in
the original depth domain and build a cross section as
shown in Figure 6c.

Correlating multiple types of logs
In practice, multiple types of logs, corresponding to

different rock properties, are often measured in a same
well. It is worthwhile to simultaneously correlate multi-
ple types of logs to obtain consistent correlation shifts.
In addition, simultaneous correlation is helpful to com-

Figure 7. Four types of well logs, including (a) velocity, (b) gamma ray, (c) density, and (d) porosity are simultaneously correlated
as shown in (e-h), respectively.
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pute more reliable correlations by incorporating more
constraints from different types of logs.

To be applied to the simultaneous correlations of
multiple types of logs, the weighted incremental corre-
lation method requires only minor modifications. In this
case, we use the dynamic programming method to com-
pute the same shifts uk½i� for all M types of logs at each
kth well by solving the following minimization:

argmin
uk½i�

X

i

XM

m¼1

ēm½i; uk�;

subject to umin ≤ uk½i� ≤ umaxandjuk½i� − uk½i − 1�j ≤ ε;

(4)

where ēm½i; uk� represents normalized alignment errors
em½i; uk� computed for each mth type of logs:

em½i; uk� ¼
Xk−1

j¼1

wm;j;kjf m;j½iþ uj½i�� − f m;k½iþ uk½i��jp:

(5)

In this equation, f m;j denotes previously correlated jth
(j ¼ 1;2; : : : ; k − 1) well at the mth log type; uj½i� repre-
sents the shifts that are already computed for the jth
well; f m;k is the kth well (at the mth type) to be corre-
lated; and uk½i� represents the shifts to be computed for
this kth well. Notice that the shifts uk½i� are independent
on the log typem because we expect the shifts to be the
same for all different types of logs at the same well. The
weights wm;j;k are defined similarly to those in equa-
tion 2, but they also depend on the log typem. Note that
the alignment errors (equation 5) are normalized before
summing them together in equation 4 because the mag-
nitude orders of different log types are much different
from each other as shown in Figure 7.

Using the correlation shifts computed with this
method, we simultaneously correlate the four types
of velocity, gamma ray, density, and porosity logs, as
shown in Figure 7e–7h, respectively. We can observe
that all the well logs are accurately and consistently
aligned. These 21 wells are still sequentially correlated
from well index k ¼ 1 to k ¼ 21. However, the process-
ing order (from index k ¼ 1 to k ¼ 21) is not chosen to
be geologically optimal as in the previous examples of
correlating a single type of logs.

The processing order shown in Figure 7 is actually
randomly chosen for testing the method. We can ob-
serve that the all the velocity logs are missing at the
first eight wells except the first well. In addition, the
four types of logs at the ninth well are all short but
are ordered and correlated before many other logs.
Therefore, this randomly chosen processing order in
Figure 7 is obviously not an optimal order for the
sequential correlation. However, the weighted incre-
mental correlation method still provides reliable corre-
lations as shown in Figure 7e–7h, which indicates that

this proposed method does not highly depend on
the path.

Conclusion
We have discussed methods to compute a geologi-

cally optimal path by solving an eikonal equation
defined with log length and seismic structural disconti-
nuities, to sequentially correlate multiple logs by using
an increasing number of references, and to quantita-
tively evaluate the correlation results by computing cor-
relation confidences.

The geologically optimal path starts with relatively
longer logs, follows shorter Euclidean distances, and
avoids geologically discontinuous structures such as
faults and unconformities that are recognized from a
corresponding 3D seismic image. To avoid correlation
errors propagating with the path, we use all the previ-
ously correlated logs as references to correlate a sub-
sequent log. We also compute geologic distances and
correlation confidences of the reference logs and use
the distances and confidences to weight these referen-
ces in correlating the current log. By using weighted
and increasing number of references, each log is opti-
mally correlated to all the logs that are geologically
closer and are ordered with higher priorities in the path.
This weighted incremental correlation method is highly
efficient and takes less than 1 min to correlate the four
types of logs of 21 wells (Figure 7) with an eight-core
computer.

Acknowledgments
This research is supported by the sponsors of the

Texas Consortium for Computation Seismology. All
the well-log data are provided by the Rocky Mountain
Oilfield Test Center.

References
Fang, J., H. Chen, A. W. Shultz, and W. Mahmoud, 1992,

Computer-aided well log correlation (1): AAPG Bulletin,
76, 307–317.

Hale, D., 2009, Image-guided blended neighbor interpola-
tion of scattered data: 79th Annual International Meet-
ing, SEG, Expanded Abstracts, 1127–1131.

Hale, D., 2013a, Dynamic warping of seismic images: Geo-
physics, 78, no. 2, S105–S115, doi: 10.1190/geo2012-0327.1.

Hale, D., 2013b, Methods to compute fault images, extract
fault surfaces, and estimate fault throws from 3D seis-
mic images: Geophysics, 78, no. 2, O33–O43, doi: 10
.1190/geo2012-0331.1.

Jeong, W. K., P. T. Fletcher, R. Tao, and R. Whitaker, 2007,
Interactive visualization of volumetric white matter
connectivity in DT-MRI using a parallel-hardware Ham-
ilton-Jacobi solver: IEEE Transactions on Visualization
and Computer Graphics, 13, 1480–1487, doi: 10.1109/
TVCG.2007.70571.

Julio, C., F. Lallier, and G. Caumon, 2012, Accounting for
seismic trends in stochastic well correlation, in P. Abra-
hamsen, R. Hauge, and O. Kolbjørnsen, eds., Geostatis-

Interpretation / August 2018 T721

D
ow

nl
oa

de
d 

08
/2

2/
18

 to
 1

28
.8

3.
63

.2
0.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/

http://dx.doi.org/10.1190/geo2012-0327.1
http://dx.doi.org/10.1190/geo2012-0327.1
http://dx.doi.org/10.1190/geo2012-0327.1
http://dx.doi.org/10.1190/geo2012-0331.1
http://dx.doi.org/10.1190/geo2012-0331.1
http://dx.doi.org/10.1190/geo2012-0331.1
http://dx.doi.org/10.1109/TVCG.2007.70571
http://dx.doi.org/10.1109/TVCG.2007.70571
http://dx.doi.org/10.1109/TVCG.2007.70571
http://dx.doi.org/10.1109/TVCG.2007.70571
http://dx.doi.org/10.1109/TVCG.2007.70571


tics, Quantitative Geology and Geostatistics: Springer,
251–262.

Lallier, F., G. Caumon, J. Borgomano, S. Viseur, F. Four-
nier, C. Antoine, and T. Gentilhomme, 2012, Relevance
of the stochastic stratigraphic well correlation ap-
proach for the study of complex carbonate settings: Ap-
plication to the Malampaya buildup (Offshore Palawan,
Philippines): Geological Society of London, Special
Publications, 265–275.

Lallier, F., G. Caumon, J. Borgomano, S. Viseur, J.-J. Royer,
and C. Antoine, 2016, Uncertainty assessment in the
stratigraphic well correlation of a carbonate ramp:
Method and application to the Beausset Basin, SE
France: Comptes Rendus Geoscience, 348, 499–509,
doi: 10.1016/j.crte.2015.10.002.

Le Nir, I., N. Van Gysel, and D. Rossi, 1998, Cross-section
construction from automated well log correlation: a dy-
namic programming approach using multiple well logs:
Presented at the SPWLA 39th Annual Logging Sympo-
sium.

Lineman, D., J. Mendelson, and M. N. Toksoz, 1987, Well-
to-well log correlation using knowledge-based systems
and dynamic depth warping: Technical report, Massa-
chusetts Institute of Technology, Earth Resources Lab-
oratory.

Mann, C. J., and T. P. Dowell, 1978, Quantitative lithostrati-
graphic correlation of subsurface sequences: Com-
puters & Geosciences, 4, 295–306, doi: 10.1016/0098-
3004(78)90064-X.

Marfurt, K. J., V. Sudhaker, A. Gersztenkorn, K. D. Craw-
ford, and S. E. Nissen, 1999, Coherency calculations in
the presence of structural dip: Geophysics, 64, 104–111,
doi: 10.1190/1.1444508.

Rudman, A. J., and R. W. Lankston, 1973, Stratigraphic
correlation of well logs by computer techniques: AAPG
Bulletin, 57, 577–588.

Smith, T., and M. Waterman, 1980, New stratigraphic
correlation techniques: The Journal of Geology, 88,
451–457, doi: 10.1086/628528.

Waterman, M. S., and R. Raymond, 1987, The match game:
New stratigraphic correlation algorithms: Mathematical
Geology, 19, 109–127.

Wheeler, L., and D. Hale, 2014, Simultaneous correlation of
multiple well logs: 84th Annual International Meeting,
SEG, Expanded Abstracts, 618–622.

Wu, X., and D. Hale, 2015, 3D seismic image processing for
unconformities: Geophysics, 80, no. 2, IM35–IM44, doi:
10.1190/geo2014-0323.1.

Wu, X., and D. Hale, 2016, 3D seismic image processing for
faults: Geophysics, 81, no. 2, IM1–IM11, doi: 10.1190/
geo2015-0380.1.

Wu, X., and E. Nyland, 1987, Automated stratigraphic inter-
pretation of well-log data: Geophysics, 52, 1665–1676,
doi: 10.1190/1.1442283.

Biographies and photographs of the authors are not
available.

T722 Interpretation / August 2018

D
ow

nl
oa

de
d 

08
/2

2/
18

 to
 1

28
.8

3.
63

.2
0.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/

http://dx.doi.org/10.1016/j.crte.2015.10.002
http://dx.doi.org/10.1016/j.crte.2015.10.002
http://dx.doi.org/10.1016/j.crte.2015.10.002
http://dx.doi.org/10.1016/j.crte.2015.10.002
http://dx.doi.org/10.1016/j.crte.2015.10.002
http://dx.doi.org/10.1016/j.crte.2015.10.002
http://dx.doi.org/10.1016/0098-3004(78)90064-X
http://dx.doi.org/10.1016/0098-3004(78)90064-X
http://dx.doi.org/10.1016/0098-3004(78)90064-X
http://dx.doi.org/10.1190/1.1444508
http://dx.doi.org/10.1190/1.1444508
http://dx.doi.org/10.1190/1.1444508
http://dx.doi.org/10.1086/628528
http://dx.doi.org/10.1086/628528
http://dx.doi.org/10.1190/geo2014-0323.1
http://dx.doi.org/10.1190/geo2014-0323.1
http://dx.doi.org/10.1190/geo2014-0323.1
http://dx.doi.org/10.1190/geo2015-0380.1
http://dx.doi.org/10.1190/geo2015-0380.1
http://dx.doi.org/10.1190/geo2015-0380.1
http://dx.doi.org/10.1190/geo2015-0380.1
http://dx.doi.org/10.1190/1.1442283
http://dx.doi.org/10.1190/1.1442283
http://dx.doi.org/10.1190/1.1442283

