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S U M M A R Y
Estimating orientations of seismic structures (reflections) and stratigraphic features (chan-
nels) is important for seismic interpretation, subsurface interpolation and geophysical inver-
sion. Structure tensors, constructed as smoothed outer products of amplitude gradients, are
commonly used to estimate seismic reflection normals, which uniquely define the reflection
orientations. However, this conventional structure-tensor method often generates significant
errors in estimating orientations of the reflections with steep and rapidly varying slopes. To
better estimate reflection orientations, we propose to construct structure tensors in a new space,
where the reflections are mostly flat or only slightly dipping and the variation of reflection
slopes is reduced. We use these constructed structure tensors to compute reflection normals
in this new space and then transform the normals back to obtain a better estimation of re-
flection orientations in the original space. Seismic stratigraphic features such as channels are
often aligned within dipping reflections. It is not discussed previously by others to estimate
orientations of such features directly from a seismic image. An ideal way to estimate strati-
graphic orientations is to first extract a horizon surface with stratigraphic features, and then
construct structure tensors with gradients on the surface to estimate the orientations of the
features. However, extracting horizon surfaces can be a difficult and time-consuming task in
practice. Fortunately, computing gradients on a horizon surface is only a local operation and is
equivalent to directly compute directional derivatives along reflection slopes without picking
horizons. Based on this observation, we propose to use an equivalent but more efficient way
to estimate seismic stratigraphic orientations by using structure tensors constructed with the
directional derivatives along reflections. We demonstrate the methods of estimating structural
and stratigraphic orientations using 3-D synthetic and real examples.

Key words: Image processing; Numerical solutions; Inverse theory; Numerical approxima-
tions and analysis.

1 I N T RO D U C T I O N

A seismic image contains useful structural and stratigraphic fea-
tures such as reflections and channels. Reflections are the dominant
features in a seismic image while the stratigraphic features are
aligned within the dipping reflections. Estimating the orientations
of the seismic structural and stratigraphic features is helpful to en-
hance such features (e.g. Bakker 2002; Fehmers & Höcker 2003;
Hale 2009b), to interpret horizons (e.g. Lomask et al. 2006; Parks
2010; Fomel 2010; Luo & Hale 2013; Wu & Hale 2015b) and to in-
corporate the structural and stratigraphic constraints in subsurface
modelling (Hale 2009a; Wu 2017a) and geophysical inversion (Li
& Oldenburg 2000; Clapp et al. 2004; Ma et al. 2012; Wu 2017b).

As discussed by Marfurt (2006), the local reflection orienta-
tion can be described by reflection normal vector, or by inline
and crossline slopes, or equivalently by dip and azimuth. To es-

timate reflection orientations, Bakker (2002) and Wu & Hale
(2015a) use structure tensors (e.g. Van Vliet & Verbeek 1995;
Weickert 1997) to compute reflection normal vectors. Fomel (2002)
and Arias (2016) use plane-wave destruction (Claerbout 1992)
and dynamic image warping (Hale 2013), respectively, to com-
pute the inline and crossline reflection slopes. Marfurt (2006)
and Yu et al. (2013) compute the reflection dip and azimuth
by coherence scanning and using 2-D Log-Gabor filter (Field
1987), respectively. Although numerous methods have been pro-
posed to estimate seismic reflection orientations. It is still a chal-
lenge to estimate the orientations of reflections with steep and
rapidly varying slopes. In addition, estimating seismic stratigraphic
orientations is not discussed in these methods. In this paper,
we propose methods to more accurately estimate seismic struc-
tural and stratigraphic orientations by using directional structure
tensors.
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As the conventional structure-tensor method often generates er-
rors in estimating orientations of reflections with steep and rapidly
varying slopes, we propose to estimate reflection orientations in a
new space, where the reflections are all flat or only slightly dipping
and the reflection slopes spatially vary slowly. To define such a
space, we first use the conventional structure tensors to compute an
initial estimation of the reflection normal vectors u, from which we
compute the other two orthogonal vectors p and q that are orthogo-
nal to u and approximately aligned within reflections. With the three
orthogonal vectors, we define a new upq space, which is similar to
the uvt space discussed by Mallet (2004, 2014), the stratigraphic
space discussed by Karimi & Fomel (2015), and the rotated space
discussed by Di & Gao (2016). In such a space, seismic reflections
are almost flat or only slightly dipping in areas where the initial
reflection normals u are not accurate enough.

To estimate the reflection orientation in the new upq space, we do
not need to explicitly transform the original seismic image into this
new space. Constructing structure tensors in the new space requires
only the image gradients in that space. It is a local operation to
compute the gradients in the new space, which is equivalent to
compute directional derivatives in directions along the vectors u, p
and q. Therefore, we can efficiently construct structure tensors in the
new space with the directional derivatives to estimate the reflection
normals in the new space. We then use a transformation matrix
defined by vectors u, p and q to transform these normal vectors
back to obtain an accurate estimation of the reflection normals in
the original space.

To compute orientations of stratigraphic features that are aligned
within reflections, we only need to estimate how the stratigraphic
features are laterally oriented along seismic reflections because we
have already estimated the reflection normals. To estimate the lat-
eral orientations of the stratigraphic features, we can also construct
directional structure tensors but with only the directional derivatives
along vectors p and q that are aligned within reflections. Combining
with the estimated lateral stratigraphic orientations and the reflec-
tion normals (that are also perpendicular to stratigraphic features),
we are able to describe how the stratigraphic features are oriented in
3-D space. To demonstrate the methods of directional structure ten-
sors in estimating structural and stratigraphic features, we applied
the methods to both synthetic and real 3-D examples and compared
the results with those computed from the conventional structure
tensors.

2 C O N V E N T I O NA L S T RU C T U R E
T E N S O R S

To demonstrate the methods of estimating structural and strati-
graphic orientations, we created a 3-D synthetic example with an
unconformity, a fault, folded layers, and a channel as shown in
Figs 1 and 2. In creating this synthetic example, we first define a
simple reflectivity model with all flat layers, in which a sinusoidal
shape channel is defined with relatively high reflectivities. We then
vertically sheared the flat model to create folding and dipping struc-
tures. Next, we added several flat layers on the top to create an
unconformity between these flat layers above and the folded layers
below. We finally added a planar fault by sliding model blocks on
opposite sides of the fault with some specific vector shifts. With the
folded and faulted reflectivity model, we compute the seismic im-
age shown in Figs 1(a) and 2(a) by convolving the reflectivity model
with a Ricker wavelet in directions perpendicular to the structures,
and adding some random noise with RMS = 0.5. Figs 1(b) and (c),

Figure 1. A noisy synthetic seismic image (a) and corresponding true inline
(b) and crossline (c) slopes.

respectively, show the true inline and crossline reflection slopes that
we used to create the folding and dipping in the reflectivity model.
The horizon surface in Fig. 2(a) displays a sinusoidal channel. We
describe the orientation of the channel using the azimuth α as de-
fined in Fig. 2(a), and the true azimuth of the channel is displayed
in colours on the channel in Fig. 2(b).
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Figure 2. The seismic image is displayed with a channel (a) and the azimuth
(b) of the channel on a seismic horizon surface.

Several methods, such as the structure tensor (Van Vliet &
Verbeek 1995; Weickert 1997; Fehmers & Höcker 2003), coherence
scanning (Marfurt 2006), plane-wave destruction (Fomel 2002) and
dynamic image warping (Arias 2016), have been proposed to esti-
mate seismic reflector orientations. However, the later three methods
are not applicable to estimate orientations of seismic stratigraphic
features such as channels. In this paper, we first discuss how to
use the conventional structure-tensor method to estimate orienta-
tions of both structural features (reflections) and stratigraphic fea-
tures (channels). We then discuss how to improve the estimation of
seismic structural and stratigraphic orientations using directional
structure tensors.

Assume u(x) is a unit vector normal to image features at the
image sample x. In an ideal image without noise, the gradient vector
g(x) of the image should be parallel to the normal vector u, along
which the features vary most significantly. Practically, the image
gradient vector, however, is often an unstable estimation of the true
normal vector because of noise or measurement errors. Therefore,
in practice we estimate the orientations of image features by fitting
the gradient vectors in least-squares sense. Let y be a sample located
in the neighbourhood � of the sample x. The error of a gradient

vector g(y) at a nearby sample y with respect to the normal vector
u(x) can be defined as (van de Weijer 2005):

e(x, y) = ‖g(y) − [g(y)�u(x)]u(x)‖, (1)

where the difference g(y) − [g(y)�u(x)]u(x) is the projection of g
on the normal to u, and the error measures the normal distance
from the gradient vector to the normal vector u. The normal vector
u(x) fitting all the gradients g(y) in the neighbourhood � of x can
be computed by minimizing the following summation of weighted
squared errors over all nearby samples:

E(x) =
∫

�

e2(x, y)G(x − y)dy, (2)

where G(·) represents a Gaussian function (centred at x), the aper-
ture of which defines the neighbourhood of the sample x. This
equation can be rewritten as:

E(x) =
∫

�

g�gGdy −
∫

�

u�(gg�)uGdy. (3)

Minimizing this objective function is equivalent to solving the fol-
lowing constrained maximization problem:

u�
(∫

�

(gg�)Gdy

)
u, subject to u�u = 1, (4)

where T(x) = ∫
�

(gg�)Gdy is the structure tensor which can be
considered as smoothed outer products of gradient vectors in the
neighbourhood centred at x. To find the u that maximizes the
above constrained objective function, we need to find the extrema
of the function λ(1 − u�u) + u�Tu according to the method of
Lagrange multipliers. Differentiating this function with respect to
u and letting the derivative to be zero, we have Tu = λu, which
indicates that the orientation vector u maximizing the objective
function is the eigenvector of the structure tensor T corresponding
to the largest eigenvalue.

For a 3-D image, each structure tensor T is a 3 × 3 symmetric
positive-semi-definite matrix

T = 〈gg�〉 =

⎡
⎢⎣

〈g1g1〉 〈g1g2〉 〈g1g3〉
〈g1g2〉 〈g2g2〉 〈g2g3〉
〈g1g3〉 〈g2g3〉 〈g3g3〉

⎤
⎥⎦, (5)

where g1, g2 and g3 are the three components of an image gradient
vector g computed at a 3-D image sample. 〈·〉 denotes Gaussian
smoothing of whatever is inside the angle brackets. The eigende-
composition of such a 3-D structure tensor is as follows:

T = λuuu� + λvvv� + λwww�, (6)

where u, v and w are normalized eigenvectors corresponding to
the eigenvalues λu, λv and λw , respectively. These eigenvectors
provide an estimation of orientations of consistent features in the
3-D image. For a 3-D seismic image, these eigenvectors can be
used to approximate the orientations of structural and stratigraphic
features such as reflections and channels.

2.1 Seismic structural orientations

As discussed by Hale (2009b), if we label the eigenvalues λu ≥
λv ≥ λw ≥ 0, then the corresponding eigenvectors u are parallel
to directions in which the image features vary most significantly;
while the eigenvectors w are parallel to directions in which the
image features vary least significantly. Both eigenvectors v and w
lie within local planes of planar image features. Therefore, in a
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Figure 3. Estimated inline (a) and crossline (b) slopes using the conven-
tional structure-tensor method.

3-D seismic image, the normal vectors of seismic reflections can
be approximated by the eigenvectors u, and the vectors parallel to
seismic stratigraphic features (channels) can be approximated by
the eigenvectors w.

In 3-D cases, the normalized eigenvectors u are unit vectors that
contain three components u = (u1, u2, u3), where u1, u2, and u3

represent vertical, inline, and crossline components, respectively. As
reflections are rarely vertical, we can assume the reflection normals
are always pointing downward and the vertical components u1 > 0.
The inline and crossline slopes s2 and s3 of seismic reflectors can
be computed from the eigenvectors u as follows:

s2 = −u2

u1
and s3 = −u3

u1
. (7)

Figs 3(a) and (b) show the inline (s2) and crossline (s3) slopes
computed from the eigenvectors u of the conventional structure
tensors (eq. 5). These estimated slopes (Fig. 3) look similar to the
true slopes (Figs 1b and c). However, significant errors or residuals
are existing in these estimated slopes as shown in the images of
absolute differences between the true and estimated slopes in Fig. 4.
These residuals are relatively higher in areas where the slopes vary
faster.

The residuals are mainly generated by noise in the seismic image
and the smoothing in constructing structure tensors. In a clean image
without noise, the gradient vectors g of the image will be an ideal es-

Figure 4. Absolute errors of the estimated inline (a) and crossline (b) slopes
using the conventional structure-tensor method.

timation of the orientations perpendicular to seismic reflections. In
practice, the gradient vectors are noisy and are not necessarily per-
pendicular to seismic reflections. Therefore, we expect to compute
more stable average orientations by applying some smoothing filter
to each element of the gradient-based structure tensors as shown
in eq. (5). The smoothing is helpful to compute stable orientations,
however, may reduce the resolution of orientation variation in an
image. In computing the slopes shown in Fig. 3, we implemented
the smoothing in eq. (5) as a Gaussian filter and the smoothing
extents (or half width) in vertical, inline, and crossline directions
are σ 1 = 8 (samples), σ 2 = 2 (samples), and σ 3 = 2 (samples),
respectively. These smoothing parameters are the optimal ones for
this example to compute the best slope estimation (Fig. 3) with the
smallest absolute errors (Fig. 4), which are still significant in some
areas with steep and highly varying slopes.

2.2 Seismic stratigraphic orientations

The spatial orientations of the seismic channel (Fig. 2a) can be
approximated by the eigenvectors w = (w1, w2, w3) computed from
the structure tensors. Since the eigenvectors u are perpendicular
to the channel, then we can also uniquely describe the orientations of
the channel by using u and the lateral azimuth α shown in Fig. 2(a).
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Figure 5. Channel azimuth (a) estimated using the conventional structure-
tensor method and the absolute errors (b) of the estimated azimuth.

This lateral azimuth α can be computed from the inline (w2) and
crossline (w3) components of the eigenvectors w:

α = arctan
w3

w2
. (8)

Fig. 5(a) shows the channel azimuth α values that are computed
from the eigenvectors w of conventional structure tensors. We ac-
tually compute the azimuth values everywhere in the 3-D seismic
image, but display those values only on the channel because the
eigenvectors w in areas away from the channel are arbitrarily ori-
ented along reflections. Fig. 5(b) shows the absolute errors of the
estimated channel azimuth values compared to the true ones in
Fig. 2(b). We observe that the errors in the estimated seismic chan-
nel orientations (Fig. 5b) are even bigger than those in the estimated
reflection slopes (Fig. 4) by using the conventional structure tensors.
In the next section, we will discuss how to improve both estimations
of seismic structural and stratigraphic orientations.

3 D I R E C T I O NA L S T RU C T U R E T E N S O R S

To better estimate orientations of seismic structures (reflections), we
compute 2-D or 3-D directional structure tensors with directional
derivatives in directions perpendicular and parallel to reflections. By
doing this, we actually construct structure tensors in a new space
where reflections are flat or only slightly dipping. The orientations

of such slightly dipping reflections can be accurately estimated in
this new space and then transformed back to obtain an accurate
estimation of the reflection orientations in the original space. In
3-D cases, to better estimate spatial orientations of seismic strati-
graphic features (channels), we construct 2-D directional structure
tensors with directional derivatives parallel to seismic reflections.
Such directional structure tensors are equivalent to the conventional
structure tensors computed along a horizon surface, and therefore
are robust to estimate orientations of stratigraphic features that are
aligned within dipping reflections.

3.1 Improved structural orientations

As discussed in the previous section, smoothing is required in con-
structing structure tensors to obtain stable orientation estimations
but reduces the resolution of orientation variations. We therefore ob-
serve the largest errors apparent in areas with rapidly varying slopes
as shown in Fig. 4. In addition, steep structures can easily generate
alias in structure tensors as discussed by Köthe (2003), which can
make the conventional structure tensors fail to accurately estimate
the orientations of highly dipping structures. To avoid errors in es-
timating slopes of highly dipping and rapidly varying reflections,
we propose to estimate reflections slopes in a new upq space, where
the reflections are flat or slightly dipping and the slope variations
are reduced. We define such a space by using reflection normals u
estimated from the conventional structure tensors. In this upq space,
the vertical curvilinear axis is locally parallel to the initial normals
u, while the other two curvilinear axes are locally parallel to unit
vectors p and q that are orthogonal to u and laterally aligned within
seismic reflections.

Assume the vectors p are locally parallel to reflections in the
inline directions, and therefore can be considered as the reflection
inline slope vectors, which can be computed as

p =

⎡
⎢⎢⎢⎢⎢⎢⎣

s2√
s2

2 + 1
1√

s2
2 + 1

0

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

−u2√
u2

1 + u2
2

u1√
u2

1 + u2
2

0

⎤
⎥⎥⎥⎥⎥⎦. (9)

The vectors p are orthogonal to the approximate reflection normals
u, which indicates that p are locally approximately parallel to seis-
mic reflections. In addition, the crossline components of p are zeros
and the inline components are positive ( u1√

u2
1+u2

2

> 0), which means

that the axis following the vectors p is exactly aligned within the
vertical-inline plane and always increases with the inline axis.

The other unit vectors q should be orthogonal to both vectors u
and p, and therefore can be computed as

q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−u1u3√
(u2

1 + u2
2)2 + (u2u3)2 + (u1u3)2

−u2u3√
(u2

1 + u2
2)2 + (u2u3)2 + (u1u3)2

u2
1 + u2

2√
(u2

1 + u2
2)2 + (u2u3)2 + (u1u3)2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−u1u3√
u2

1 + u2
2

−u2u3√
u2

1 + u2
2

u2
1 + u2

2√
u2

1 + u2
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (10)

Similar to the vectors p, the vectors q are also orthogonal to the
reflection normal vectors u and therefore are locally approximately
parallel to reflections. Since the crossline components of q are al-
ways positive, then the axis following the vectors q always increases
with the crossline axis. However, since the inline components of q
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are not necessarily equal to zeros, then the vectors q are not crossline
slope vectors, and the axis following the vectors q is not necessarily
aligned within the vertical-crossline plane.

The new upq space spanned by these three orthogonal vectors u,
p and q is similar to the uvt space discussed by Mallet (2002, 2004).
In this space, the axes u, p, and q locally follows the vectors u, p and
q, respectively, and therefore are curvilinear. The u axis is locally
perpendicular to seismic reflections and always increases (u1 > 0)
with the vertical time- or depth-axis. The p and q axes are aligned
within seismic reflections and always increases (p2 > 0 and q3 > 0)
with the inline and crossline axes, respectively. Ideally, seismic
reflections in this upq space should be all flat as in the uvt space.
In practice, reflections might be still slightly dipping because the
estimated reflection normals u may not be accurately perpendicular
to reflections and the vectors p and q may not be accurately aligned
within the reflections. However, it is still helpful to consider the
estimation of reflection orientations in the new space because the
reflections are mostly flat or only slightly dipping and the slope
variations are reduced in this space. Orientations of such slightly
dipping reflections in this new space can be accurately estimated by
using structure tensors.

To estimate reflection orientations in the new space, we do not
need to explicitly transform the whole seismic image into this space.
We only need to compute local derivatives in directions along the
vectors u, p and q and use them to construct 3-D directional structure
tensors as follows:

Td =

⎡
⎢⎣

〈gu gu〉 〈gu gp〉 〈gu gq〉
〈gu gp〉 〈gpgp〉 〈gpgq〉
〈gu gq〉 〈gpgq〉 〈gq gq〉

⎤
⎥⎦, (11)

where gu, gp and gq represent directional derivatives of a 3-D seismic
image in directions along the orthogonal unit vectors u, p and q,
respectively. Note that these directional derivatives gu(x), gp(x),
and gq (x) and the directional structure tensors Td (x) are computed
on the sampling grid of the seismic image f (x) in the original
space x = (x1, x2, x3). Interpolations are required to compute the
directional derivatives:

gu(x) = 1

2
[ f (x + u(x)) − f (x − u(x))]

gp(x) = 1

2
[ f (x + p(x)) − f (x − p(x))]

gq (x) = 1

2
[ f (x + q(x)) − f (x − q(x))] , (12)

where f (x ± u(x)), f (x ± p(x)) and f (x ± q(x)) are interpolated
from the input seismic image f (x) using the sinc interpolation
method.

Ideally, the smoothing 〈·〉 in eq. (11) should be implemented
as structure-oriented smoothing (Fehmers & Höcker 2003; Hale
2009b) in directions along vectors u, p and q. However, as dis-
cussed previously in this paper, this smoothing only provides a
weighted average of the neighbouring orientations. Therefore, to
be efficient, we can still implement such a weighted average with
a Gaussian smoothing in vertical, inline, and crossline directions.
To be consistent, the smoothing extents in constructing these direc-
tional structure tensors (eq. 11) are the same as in constructing the
conventional structure tensors (eq. 5).

By using the directional derivatives in directions along u, p and
q, we actually construct the directional structure tensors in the new
space spanned by vectors u, p and q. In this space, reflections are
flat or only slightly dipping, the eigenvectors û (corresponding to

the maximum eigenvalues) of the structure tensors (eq. 11) can
often provide an accurate estimation of the normals of these re-
flections. However, these eigenvectors û are computed in the new
space spanned by u, p, and q. We need to transform û back to the
original vertical–inline–crossline space and obtain an estimation of
reflection normals ũ in the original space:

ũ = [u p q]û =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1
−u2√

u2
1 + u2

2

−u1u3√
u2

1 + u2
2

u2
u1√

u2
1 + u2

2

−u2u3√
u2

1 + u2
2

u3 0
u2

1 + u2
2√

u2
1 + u2

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣

ûu

û p

ûq

⎤
⎥⎦. (13)

If the initial reflection normals u are all accurately perpendicular
to the seismic reflections, then the reflections should be all flat and
we will have û = (1, 0, 0) in the new space spanned by u, p and
q. Then we have ũ = u according to the transformation eq. (13),
which means that we will have no updates in the new unit vectors ũ.
If there are errors or residuals existing in the initial normals u, that
is, u are not perfectly perpendicular to the reflections, then there
will be slightly dipping reflections in the new space. The estimated
û (û 	= (1, 0, 0)) will be perpendicular to these dipping reflections
in the new space, and the transformed unit vectors ũ (ũ 	= u) are
supposed to correct the potential residuals in u. The estimated new
reflection normals ũ are supposed to be more accurate than the initial
normals u because the structure-tensor method is more reliable to
estimate normals of reflections with small and slowly varying slopes
in the new space than those with high and rapidly varying slopes in
the original space.

Fig. 6 shows the p-axis (Fig. 6a) and q-axis (Fig. 6b) slopes of
reflections computed in the upq space. We compute these p-axis
slope sp and q-axis slope sq from the eigenvectors û of the structure
tensors (eq. 11) in the new space:

sp = − û p

ûu
and sq = − ûq

ûu
. (14)

We observe the reflection slopes sp (Fig. 6a) and sq (Figs 6b),
estimated in the new space, are close to zero and vary slowly within
a small range from −0.5 to 0.5. In addition, the relatively high
values in sp and sq appear in areas where the errors (Fig. 4) are
relatively high in the initially estimated reflection slopes (Fig. 3)
or the corresponding normals u. These observations are consistent
with what we expect because the reflections in the new space should
be flat in most areas and be slightly dipping only in areas where
the initially estimated reflection slopes or normals are not accurate
enough.

Fig. 7 shows the new inline and crossline slopes s̃2 and s̃3 com-
puted from ũ:

s̃2 = − ũ2

ũ1
and s̃3 = − ũ3

ũ1
. (15)

Fig. 8 shows the corresponding absolute errors of the new slopes
compared to the true slopes in Fig. 1. These absolute errors in the
new slopes are significantly decreased compared to those in the
previous slopes (Fig. 4) computed from the conventional structure
tensors. In Fig. 8, we still observe significant errors near the uncon-
formity and fault where the true slopes (Fig. 1) are discontinuous.
This is because we still apply smoothing across the unconformity
and fault in constructing the directional structure tensors (eq. 11).
These errors might be further corrected by first detecting fault
and unconformity surfaces from the seismic image, and use these
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Figure 6. p-axis (a) and q-axis (b) slopes estimated in the new upq space,
where reflections are flat or only slightly dipping and slope variations are
reduced.

surfaces as input constraints to stop the smoothing near the faults
and unconformities, as discussed by Wu & Hale (2015a).

3.2 Improved stratigraphic orientations

A straightforward way to estimate orientations of seismic strati-
graphic features is to first extract stratigraphic surfaces (horizons)
from a 3-D seismic image by following reflections, and then try to
estimate the orientations of the stratigraphic features apparent on
each horizon surface. Specifically, one can compute 2-D gradients
of seismic amplitudes on a horizon surface, and use the gradients to
construct 2-D conventional structure tensors to estimate the strati-
graphic orientations as discussed by Hale (2009b). Using amplitude
gradients computed along a horizon surface to construct structure
tensors, we are able to better capture the stratigraphic features in the
structure tensors compared to using vertical and horizontal deriva-
tives in the conventional 3-D structure tensors (eq. 5). Therefore,
stratigraphic orientations estimated in this way should be more ac-
curate than those (w) computed from the 3-D conventional structure
tensors (eq. 5). However, the disadvantage of this straightforward
way is that it requires first extracting all horizon surfaces from a
3-D seismic image, which can be difficult and time-consuming in
practice.

Figure 7. The slopes (Fig. 6) estimated in the new space are transformed
back to obtain the inline (a) and crossline (b) slopes in the original space.

Fortunately, computing amplitude gradients along a horizon sur-
face is only a local operation, which actually does not require first
extracting the surface. As a horizon surface often follows seis-
mic reflections, the equivalent amplitude gradients can be simply
computed from directional derivatives of a 3-D seismic image in
directions parallel to the reflections. Based on this observation, we
propose a more efficient but equivalent way to construct 2-D struc-
ture tensors for estimating stratigraphic orientations.

In this method, we do not need to first extract horizon surfaces
from a 3-D seismic image, instead, we only need to first estimate
reflection normals ũ (eq. 13). From the reflection normals, we com-
pute the corresponding orthogonal vectors p̃ and q̃ (eqs 9 and 10)
that are orthogonal to ũ and aligned within seismic reflections. We
then use the vectors p̃ and q̃ to construct 2-D structure tensors of
stratigraphic features as

Ts =
[ 〈gp̃gq̃〉s 〈gp̃gq̃〉s

〈gp̃gq̃〉s 〈gp̃gq̃〉s

]
, (16)

where gp and gq are locally directional derivatives computed along
seismic reflections in directions of vectors p̃ and q̃, respectively.
〈·〉s represents structure-oriented smoothing in directions along the
vectors ũ, p̃ and q̃. We implement this smoothing with anisotropic
diffusion (Weickert 1997, 1999), and the smoothing extents in di-
rections of ũ, p̃ and q̃ are approximately equal to 1 (samples), 4
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Figure 8. Absolute errors of the estimated inline (a) and crossline (b) slopes
using the directional structure tensors.

(samples) and 4 (samples), respectively, for the synthetic example.
We generally apply much stronger smoothing in lateral directions
(p̃ and q̃) than the normal directions (ũ) because the stratigraphic
features are linear features that are mainly elongated laterally along
reflections. This is also the reason why we cannot simply imple-
ment the smoothing with a Gaussian smoothing filter in vertical
and horizontal directions.

By computing amplitude derivatives along seismic reflections,
seismic structures or reflections are removed or destructed (Fomel
2002) and only the information of stratigraphic features are captured
within these directional derivatives. Therefore, using the directional
derivatives, we actually construct structure tensors of the strati-
graphic features aligned within the dipping reflections. From these
structure tensors, we further compute the corresponding eigende-
compositions as follows to estimate the stratigraphic orientations:

Ts = λaaa� + λbbb�, (17)

where λa and λb (λa ≥ λb) are eigenvalues, and a = (ap̃, aq̃ ) and b =
(bp̃, bq̃ ) are corresponding 2-D eigenvectors. These eigenvectors a
and b indicate how the stratigraphic features are laterally oriented

along reflections in the 2-D p̃q̃ space. We can transform these
vectors back to the original inline–crossline space as

ã =
⎡
⎣ p̃2 q̃2

p̃3 q̃3

⎤
⎦[

ap̃

aq̃

]
and b̃ =

⎡
⎣ p̃2 q̃2

p̃3 q̃3

⎤
⎦ [

bp̃

bq̃

]
, (18)

where the inline ( p̃2 and q̃2) and crossline ( p̃3 and q̃3) components
of vectors p̃ and q̃ are computed from the reflection normal vectors
ũ according to eqs (9) and (10). The transformed vectors ã and b̃
indicate how the stratigraphic features are laterally oriented in the
original inline–crossline space. Specifically, if we vertically project
the 3-D oriented stratigraphic features (e.g. channels) to the 2-
D horizontal inline–crossline space, then the eigenvectors ã and
b̃, respectively, are approximately perpendicular and parallel to the
stratigraphic features projected in the 2-D horizontal space. Both the
eigenvectors ã = (ã2, ã3) and b̃ = (b̃2, b̃3) contain only the inline
(ã2 and b̃2) and crossline (ã3 and b̃3) components of the stratigraphic
orientations.

To describe the orientations of stratigraphic features in 3-D space,
we can compute vectors ṽ = (ṽ1, ṽ2, ṽ3) and w̃ = (w̃1, w̃2, w̃3) that
are perpendicular and parallel to the stratigraphic features in 3-D
space by using the vectors ũ, ã, and b̃. As the vectors ṽ and w̃
will be aligned within seismic reflections, both of them should be
orthogonal to the vectors ũ: ũ�ṽ = ũ�w̃ = 0. Therefore, the three
components of vectors ṽ can be computed as

ṽ3 = ã3, ṽ2 = ã2 and ṽ1 = − ũ2ã2 + ũ3ã3

ũ1
. (19)

Similarly, the three components of w̃ can be computed as

w̃3 = b̃3, w̃2 = b̃2 and w̃1 = − ũ2b̃2 + ũ3b̃3

ũ1
. (20)

We can further normalize the vectors ṽ and w̃ by
√

ṽ2
1 + ṽ2

2 + ṽ2
3 and√

w̃2
1 + w̃2

2 + w̃2
3, respectively, to obtain corresponding unit vectors

that are locally perpendicular and parallel to seismic stratigraphic
features in the 3-D space.

The lateral azimuth α̃ (Fig. 2a) of the stratigraphic features (chan-
nels) can be estimated from the two components of the vectors b̃ or
the inline and crossline components of the vectors w̃:

α̃ = arctan
b̃3

b̃2

= arctan
w̃3

w̃2
. (21)

The RGB colours in Fig. 9(a) shows the estimated lateral azimuth of
the channel in the synthetic example, which looks almost the same
as the true azimuth shown in Fig. 2(b). Fig. 9(b) shows the corre-
sponding absolute errors, which are significantly reduced compared
to the errors (Fig. 5b) in the azimuth (Fig. 5a) estimated using the
3-D conventional structure tensors.

In Fig. 9(a), We display the azimuth of stratigraphic features only
at the channel on the surface because there is no linear stratigraphic
features in areas away from the channel. In these areas, the image
features are isotropic and therefore the vectors ṽ and w̃ are arbitrar-
ily oriented within the horizon surface. In addition, we estimated
the stratigraphic azimuth without picking the horizon surface, we
compute the azimuth at each image sample directly from the 3-
D seismic image using the directional structure tensors defined in
eq. (16).
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Figure 9. Channel azimuth (a) estimated using the improved structure-
tensor method and the absolute errors (b) of the estimated azimuth.

4 R E A L E X A M P L E S

The synthetic 3-D example shown in Figs 1–9 illustrates the meth-
ods of using directional structure tensors to better estimate seismic
structural and stratigraphic orientations. To further demonstrate the
methods, we apply them to two real 3-D seismic images with steep
structures (reflections) and many stratigraphic features (channels).

4.1 Structural orientations

To demonstrate how the directional structure tensors can better esti-
mate structural orientations than the conventional structure tensors,
we use the real 3-D Poseidon seismic image with complicated car-
bonates as shown in Fig. 10. The upper-right panel in Fig. 10 shows
a zoomed in 3-D view of the seismic image, while the upper-left,
lower-left, and lower-right panels, respectively, display the time,
crossline, and inline slices extracted from the whole 3-D seismic
image. This Poseidon seismic image shows a small Miocene isolated
carbonate platform that progrades into deeper outer shelf area on
the Browse basin of the NW Shelf of Australia (Howarth & Alves
2016). The lateral accretion of the isolated carbonate platform is
represented by sigmoidal reflection package. The internal reflec-
tion geometry in those sigmoid includes shingling steep inclined
reflections associated with donwlap, downdip and truncation up-

dip. The reflection slopes are highly steep inside the carbonates and
the slopes vary rapidly in both vertical and horizontal directions.
The conventional structure tensors often yield significant errors in
estimating such steep slopes with rapid variations.

Figs 11(a) and 12(a), respectively, show the inline and crossline
slopes s2 and s3 that are computed from the eigenvectors u of the
3-D conventional structure tensors (eq. 5). In constructing the con-
ventional structure tensors, we apply Gaussian smoothing to each
element of the tensors, and the smoothing extents in vertical, inline,
and crossline directions are σ 1 = 8 (samples), σ 2 = 2 (samples),
and σ 3 = 2 (samples), respectively.

With these estimated reflection normals u, we compute the corre-
sponding orthogonal vectors p and q, and then compute directional
derivatives in directions along these three vectors. We further use
these directional derivatives to construct directional structure ten-
sors in the upq space as in eq. (11). In constructing such directional
structure tensors, we apply exactly the same Gaussian smoothing
to each element of the tensors in vertical, inline, and crossline di-
rections. From the directional structure tensors, we first compute
normal vectors û of reflections in the new space spanned by the
orthogonal vectors u, p, and q. We then transform (eq. 13) the
eigenvectors û back to obtain reflection normals ũ in the origi-
nal vertical–inline–crossline space. Figs 11(b) and 12(b), respec-
tively, show the new inline and crossline slopes computed from the
vectors ũ.

As shown in Figs 11 and 12, the new slopes (Figs 11b and 12b)
are much different from the conventional slopes (Figs 11a and 12a)
inside the carbonates with steep and rapidly varying slopes. Inside
the carbonates, the absolute values of the new slopes are relatively
higher than the conventional slopes, which may indicate the new
slopes are closer to the true slopes of the steep reflections inside the
carbonates.

To verify the estimated slopes, we use them in a slope-based
horizon tracking method to extract horizons, which should follow
seismic reflections if the input slopes are accurate enough. Numer-
ous slope-based methods (de Groot et al. 2006; Lomask et al. 2006;
Parks 2010; Fomel 2010; Luo & Hale 2013; Wu & Hale 2015b)
have been proposed to extract horizons using reflections slopes. We
use the method discussed by Wu & Hale (2013, 2015b) to verify
the slopes in this paper. In this method, a horizon surface f(x, y) is
iteratively computed by solving the following nonlinear equation[

∂ f i (x, y)/∂x

∂ f i (x, y)/∂y

]
≈

[
s2(x, y, f i−1(x, y))

s3(x, y, f i−1(x, y))

]
. (22)

In this equation, the partial derivatives of the surface on the left hand
side represent the inline and crossline slopes of the surface, while
s2(x, y, f i − 1(x, y)) and s3(x, y, f i − 1(x, y)) on the right hand side are
the estimated seismic reflection slopes on the surface. This equation
means that the slopes of the horizon surface should be approximately
equal to the reflection slopes on the surface because a horizon
surface should follow the reflections. However, at the beginning we
actually do not know the correct position of the horizon surface.
Therefore, we need to begin with an initial surface f 0(x, y) (e.g. a
flat surface f 0(x, y) = z0), and then iteratively update the surface by
solving the above equation until the surface slopes fit the reflection
slopes at the i −th iteration (Wu & Hale 2015b).

Fig. 13(a) shows some horizons that are extracted by using the
conventional slopes (Figs 11a and 12a). These extracted horizons
can accurately follow the seismic reflections outside the carbon-
ates but fail to follow the steep reflections inside the carbonates.
Fig. 13(b) shows the horizons that are extracted by using the new



Directional structure tensors 543

Figure 10. Three orthogonal slices of a 3-D seismic image and a 3D view (upper-right panel) of the image.

slopes (Figs 11b and 12b). We observe that these horizons better
follow the steep and locally varying reflections than those (Fig. 13a)
computed with conventional slopes. In extracting these horizons in
Figs 13(a) and (b), we use exactly the same parameters for the hori-
zon extraction method, and the only difference is the input slopes.
This indicates that the new slopes (Figs 11b and 12b) computed
from the directional structure tensors should be closer to the true
reflection slopes than the slopes (Figs 11a and 12a) computed from
the conventional structure tensors.

4.2 Stratigraphic orientations

To demonstrate how the directional structure tensors can better
estimate stratigraphic orientations than the conventional structure
tensors, we use another real 3-D seismic image with many channel
features as shown on the horizon surface in Fig. 14. Fig. 15(a) shows
a closer view of the seismic image in the dashed red box in Fig. 14.

In this example, we first construct conventional structure tensors
(eq. 5) at all image samples and compute corresponding eigen-
vectors w, which are supposed to be locally parallel to seismic
stratigraphic features. In such a real seismic image, we do not know
the true orientation of the stratigraphic features, and therefore it is
difficult to quantitatively evaluate the errors in the estimated vectors
w. However, we can display the estimated vectors w as segments in
the same 3-D view of the seismic image to visually evaluate if these
segments are locally parallel to the stratigraphic features or not. In
Fig. 15(a), we display the estimated vectors w as red segments at
the samples on the extracted horizon surface. We observe that these
segments are generally consistent with the obvious channels but

are noisy and do not correctly follow the channels with relatively
weaker features.

The red segments in Fig. 15(c) represent the vectors w̃ computed
from the 2-D directional structure tensors in eq. (16). In computing
w̃, we first use 3-D directional structure tensors (eq. 11) to estimate
vectors ũ that are perpendicular to seismic reflections. From the
estimated ũ, we then compute orthogonal vectors p̃ and q̃ that are
parallel to seismic reflections. With these vectors p̃ and q̃, we then
construct the 2-D directional structure tensors (eq. 16) and com-
pute the corresponding 2-D eigenvectors b̃ (corresponding to the
minimum eigenvalues) of the 2-D tensors. We finally compute the
vectors w̃ from ũ and b̃ as shown in eq. (20). The normalized vec-
tors w̃, represented by red segments in Fig. 15(c), are locally much
more consistent with the seismic channel features than the vectors
w represented by red segments in Fig. 15(b). This indicates that
the vectors w̃, computed from the proposed directional structure
tensors, provide a better estimation of the stratigraphic orientations
than the vectors w computed from the conventional structure ten-
sors.

5 C O N C LU S I O N S

Conventional structure tensors can be used to accurately estimate
orientations of reflections with slightly dipping and slowly varying
slopes, but often yield errors in estimating orientations of the struc-
tures with steep and rapidly varying slopes. Therefore, we propose
a method to estimate reflection orientations in a new space, where
the reflections are almost flat or slightly dipping and the slope varia-
tions are decreased. In this method, we do not transform the seismic
image into the new space, instead, we compute local derivatives in
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Figure 11. Inline slopes are estimated using conventional (a) and directional (b) structure tensors.
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Figure 12. Crossline slopes are estimated using conventional (a) and directional (b) structure tensors.
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Figure 13. Horizons displayed in (a) and (b) are extracted using conventional (Figs 11 a and 12a) and improved (Figs 11 b and 12b) slopes, respectively.
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Figure 14. A 3-D seismic image is displayed a horizon surface, which is
extracted from the seismic image by following seismic reflections. Black
channel features are apparent on the horizon surface.

that space and use these derivatives to construct structure tensors
in the new space. From the directional structure tensors, we esti-
mate the normal vectors of the flat or slightly dipping reflections
in the new space and then transform the vectors back to obtain a
better estimation of reflection normals in the original space. The
computational cost of our directional structure-tensor method in es-
timating reflection normals is about two times of the conventional
method because the our method requires first computing an initial
estimation of reflection normals.

To estimate stratigraphic orientations in 3-D cases, we first esti-
mate the lateral orientations of the stratigraphic features using 2-D
directional structure tensors constructed with directional deriva-
tives computed along seismic reflections. This is equivalent to first
extract a horizon surface following reflections, and then construct
structure tensors with gradients along the surface to estimate the
lateral orientations of stratigraphic features apparent on the surface.
We then compute the 3-D orientations of the stratigraphic features
by combining the lateral orientations with the estimated reflections
normals.

One limitation of our methods exists in estimating discontin-
uous structural and stratigraphic orientations in areas where the
reflections and channels are dislocated by faults or terminated by
unconformities. This is also a common limitation for the conven-
tional structure-tensor method and other methods. Our methods
might be further improved by using spatially variant smoothing in
constructing the directional structure tensors, so that the smoothing
is stopped or the smoothing extents are reduced near the faults or
unconformities.
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Figure 15. (a) A closer view of the seismic image in the dashed red box in
Fig. 14. The red segments in (b) and (c) represent the 3-D vectors w and w̃
computed from the conventional (eq. 5) and directional (eq. 16) structure
tensors, respectively.

http://wiki.seg.org/wiki/Parihaka-3D
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