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ABSTRACT

Seismic coherence is widely used in seismic interpretation
and reservoir characterization to highlight (with low values)
faults and stratigraphic features from a seismic image. A
coherence image can be computed from the eigenvalues of
conventional structure tenors, which are outer products of
gradients of a seismic image. I have developed a simple
but effective method to improve such a coherence image
by using directional structure tensors, which are different from
the conventional structure tensors in only two aspects. First,
instead of using image gradients with vertical and horizontal
derivatives, I use directional derivatives, computed in direc-
tions perpendicular and parallel to seismic structures (reflec-
tors), to construct directional structure tensors. With these
directional derivatives, lateral seismic discontinuities, espe-
cially those subtle stratigraphic features aligned within dipping
structures, can be better captured in the structure tensors. Sec-
ond, instead of applying Gaussian smoothing to each element
of the constructed structure tensors, I apply approximately
fault- and stratigraphy-oriented smoothing to enhance the lat-
eral discontinuities corresponding to faults and stratigraphic
features in the structure tensors. Real 3D examples show that
the new coherence images computed from such structure ten-
sors display much cleaner and more continuous faults and
stratigraphic features compared with those computed from
conventional structure tensors and covariance matrices.

INTRODUCTION

Numerous methods, such as crosscorrelation, semblance, eigen-
decomposition of the covariance matrix, and structure tensor, have
been proposed to compute a seismic coherence image (Gerszten-
korn and Marfurt, 1999; Chopra and Marfurt, 2007). The crosscor-

relation method (Bahorich and Farmer, 1995, 1996) computes
seismic coherence using normalized crosscorrelation coefficients
of each trace and its inline and crossline neighbors. Semblance
was first proposed to compute velocity spectra (Taner and Koehler,
1969; Neidell and Taner, 1971), and then it was further developed as
a measure of coherence to detect seismic lateral discontinuities
(Marfurt et al., 1998; Hale, 2009). By applying fault-oriented
smoothing to the numerators and denominators of semblance ratios,
a semblance image can be further enhanced for fault surface extrac-
tion (Hale, 2013; Wu and Hale, 2016; Wu et al., 2016). The covari-
ance-matrix-based method (Gersztenkorn and Marfurt, 1999;
Marfurt et al., 1999; Li and Lu, 2014) computes seismic coherence
using eigenvalues of the covariance matrix constructed from
seismic traces. The structure-tensor-based method (Bakker, 2002;
Hale, 2009) computes seismic coherence using eigenvalues of struc-
ture tensors (Van Vliet and Verbeek, 1995; Weickert, 1997; Fehmers
and Höcker, 2003) constructed from gradients of a seismic image.
Other methods, such as variance (Van Bemmel and Pepper, 2000;
Randen et al., 2001), entropy measurements (Cohen and Coifman,
2002; Cohen et al., 2006), and structural prediction (Karimi et al.,
2015), also have been used to compute seismic coherence.
I propose a simple but effective method to improve the structure-

tensor-based coherence. In this method, first, I estimate seismic
structural and stratigraphic orientations using conventional structure
tensors, which are the smoothed outer products of gradients of a
seismic image. With the estimated orientations, I compute direc-
tional derivatives of the seismic image in directions perpendicular
and parallel to the seismic structures. Compared with the gradients
with vertical and horizontal derivatives, these directional derivatives
can capture more subtle lateral discontinuities aligned within
dipping structures. Then, I construct structure tensors using the
directional derivatives and applying approximately fault- and stra-
tigraphy-oriented smoothing to each element of the tensors to en-
hance faults and stratigraphic features in the tensors. Finally, I
compute eigendecomposition of the smoothed directional structure
tensors and use the eigenvalues to calculate the seismic coherence.
Real 3D examples show that the new coherence images display
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clean and continuous faults and stratigraphic features, which can be
easily tracked.

CONVENTIONAL STRUCTURE TENSORS

Structure tensors, first proposed for common digital image
processing (e.g., Kass and Witkin, 1987; Rao and Schunck,
1991; Van Vliet and Verbeek, 1995; Weickert, 1997), have been
widely applied to seismic images in estimating the orientations
of seismic structural and stratigraphic features and computing
the isotropy or anisotropy of the features (Bakker, 2002; Fehmers
and Höcker, 2003; Hale, 2009). Structure tensors can be constructed
as smoothed outer products of image gradients.
For each sample x in a 3D seismic image, a structure tensor TðxÞ

is a 3 × 3 symmetric positive-semidefinite matrix

T ¼ hgg⊤i ¼
2
4
hg1g1i hg1g2i hg1g3i
hg1g2i hg2g2i hg2g3i
hg1g3i hg2g3i hg3g3i

3
5; (1)

where g ¼ ½ g1 g2 g3 �⊤ is the image gradient vector with first
derivatives computed at the image sample x in the vertical (g1), in-
line (g2), and crossline (g3) directions. Here, h·i denotes smoothing
of whatever is inside the angle brackets. This smoothing h·i, often
implemented as a Gaussian filter, is important to obtain stable es-
timations of seismic structural and stratigraphic orientations. In all
examples in this paper, I implement the smoothing h·i using a re-
cursive Gaussian smoothing filter (Hale, 2006) with half-widths
σ1 ¼ 6 (samples), σ2 ¼ 2 (samples), and σ3 ¼ 2 (samples) in the
vertical, inline, and crossline directions, respectively, to construct
the conventional structure tensors.

Eigendecomposition

As discussed by Bakker (2002) and Hale (2009), the eigende-
composition of each structure tensor T can provide estimations

of orientation and anisotropy of image features. The eigendecom-
position of a 3D structure tensor is as follows:

T ¼ λuuu⊤ þ λvvv⊤ þ λwww⊤; (2)

where u, v, and w are normalized eigenvectors corresponding to the
eigenvalues λu, λv, and λw (λu ≥ λv ≥ λw ≥ 0), respectively. The ei-
genvectors u are perpendicular to locally planar features such as
reflectors. The eigenvectors v and w are orthogonal to u and lie
within local planes of the reflectors. Moreover, the vectors v and
w indicate orientations of lateral discontinuities such as faults
and stratigraphic features aligned within dipping reflectors (Hale,
2009). Specifically, eigenvectors w are locally parallel to the fault
strikes and stratigraphic features, whereas the eigenvectors v are
orthogonal to them.
Figure 1a shows a 3D synthetic seismic image, in which a hori-

zon surface is picked following the locally planar reflections. This
surface is discontinuous at the two faults, and a channel (denoted by
cyan arrows) is apparent on the surface. The eigenvectors v (Fig-
ure 1b) and w (Figure 1c), denoted by the yellow segments, are
aligned within the horizon surface. Near the channel and faults,
the eigenvectors v are orthogonal to the channel and the fault strike
directions, whereas the eigenvectors w are locally parallel to both.
Away from the channel and faults, v and w are arbitrarily oriented
but are still aligned within the surface. I compute these vectors for
all image samples directly from the seismic image using structure
tensors (equation 1) without picking horizon surfaces.
As discussed by Bakker (2002) and Hale (2009), the eigenvalues

λu, λv, and λw provide measures of anisotropy such as the planarity
and linearity of the image features. In this paper, I define coherence
cðxÞ as a measure of reflector planarity as follows (Hale, 2009):

cðxÞ ¼ λuðxÞ − λvðxÞ
λuðxÞ

; (3)

where we have 0 ≤ cðxÞ ≤ 1.

Figure 1. (a) A 3D seismic image is displayed with an interpreted horizon surface. The eigenvectors (yellow segments) (b) v and (c) w of the
structure tensors are aligned within the horizon surface, and they are perpendicular and parallel to the channel and faults, respectively. These
vectors are estimated directly from the seismic image without picking the horizon.
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Figure 2a shows a 3D seismic image with channel features ap-
parent on the time slice. To compare with the structure-tensor-based
coherence, first, I use the covariance-matrix-based method (Gersz-
tenkorn and Marfurt, 1999; Marfurt et al., 1999) to compute a
coherence image (Figure 2b) with nine traces and a vertical window
of eight samples for each trace. The vertical window is aligned
with seismic reflector dips as discussed by Marfurt et al. (1999).
This coherence image highlights (with lower values) most channel
features but also noise unrelated to geologic features. The subtle
channels denoted by red arrows are visible, but they are not ob-
vious in this coherence image. Figure 3a shows the structure-ten-
sor-based coherence image cðxÞ (equation 3), which also highlights
some stratigraphic features with relatively low values. However,
compared with the covariance-matrix-based coherence image (Fig-
ure 2b), these features are blurred because of the laterally isotropic
smoothing (Gaussian smoothing with half-widths σ2 ¼ σ3 ¼ 2

[samples] in the inline and crossline directions) in constructing
the structure tensors. In addition, stratigraphic details such as subtle
channels (denoted by red arrows) are not resolved in the coherence
image because these subtle features are aligned within dipping
structures and are not captured in conventional structure tensors
constructed with the vertical and horizontal derivatives.

DIRECTIONAL STRUCTURE TENSORS

To resolve subtle stratigraphic features, I pro-
pose to construct directional structure tensors us-
ing directional derivatives computed in directions
perpendicular and parallel to the dipping struc-
tures. Also, to enhance faults and stratigraphic
features, I apply approximately fault- and stratig-
raphy-oriented smoothing to each element of the
directional structure tensors.

Directional derivatives

Given a 3D seismic image fðxÞ, first, I com-
pute unit eigenvectors uðxÞ, vðxÞ, andwðxÞ using
the conventional structure tensors (equation 1).
Then, I compute directional derivatives guðxÞ,
gvðxÞ, and gwðxÞ as follows:

guðxÞ ¼
1

2
½fðxþ uðxÞÞ − fðx − uðxÞÞ�;

gvðxÞ ¼
1

2
½fðxþ vðxÞÞ − fðx − vðxÞÞ�;

gwðxÞ ¼
1

2
½fðxþ wðxÞÞ − fðx − wðxÞÞ�;

(4)

where I compute fðx� uðxÞÞ, fðx� vðxÞÞ, and
fðx� wðxÞÞ from the seismic image fðxÞ using
the sinc interpolation method. Compared with
the simple vertical and horizontal derivatives
used in conventional structure tensors (equa-
tion 1), these directional derivatives can better
capture lateral structure discontinuities, espe-
cially those subtle stratigraphic features that
are aligned within dipping structures.

Then, I use the directional derivatives to construct directional
structure tensors for each image sample x as

Ts ¼
2
4
hguguis hgugvis hgugwis
hgugvis hgvgvis hgvgwis
hgugwis hgvgwis hgwgwis

3
5; (5)

where h·is, again, represents smoothing whatever is inside the
brackets.

Smoothing

The smoothing h·is is not only important to yield stable eigen-
decompositions of the structure tensors, but it also can be helpful to
enhance desired features in the tensors. To preserve and enhance
faults and stratigraphic features, I will smooth each element of
structure tensors not across, but along such features. This requires
the smoothing to be anisotropic, spatially variant, and oriented
along the faults and stratigraphic features.
I implement such fault- and stratigraphy-oriented smoothing with

anisotropic diffusion (e.g., Weickert, 1997; Fehmers and Höcker,
2003) and implicitly compute the numerical solution of the diffu-
sion by solving the following equation (Hale, 2009):

qðxÞ − α∇ · DðxÞ∇qðxÞ ¼ pðxÞ: (6)

Figure 2. A 3D view of inline, crossline, and time slices of a (a) seismic image and
(b) covariance-matrix-based coherence image.

Figure 3. (a) Conventional and (b) directional structure-tensor-based coherence images.
The channel features in panel (b) are clearer and more continuous than those in panel
(a) and in the covariance-matrix based coherence (Figure 2b). The subtle channels de-
noted by red arrows in panel (b) are more obvious than in panel (a).

Directional structure-tensor-based coherence A 15

D
ow

nl
oa

de
d 

02
/2

1/
17

 to
 1

28
.6

2.
45

.2
52

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



In this equation, pðxÞ and qðxÞ represent the input and output im-
ages, respectively. The constant parameter α provides a control of
the smoothing extent. In all examples in this paper, I used α ¼ 18,
which corresponds to a smoothing extent approximately compa-
rable with a Gaussian smoothing with a radius σ ¼ 6 (samples).
The diffusion-tensor field DðxÞ is important to control the orienta-

tions of smoothing. In applications of enhancing seismic reflectors
(Fehmers and Höcker, 2003), the diffusion tensor D for each image
sample x is defined with eigenvectors v and w that are locally
coplanar to the reflectors: D ¼ vv⊤ þ ww⊤.
However, to enhance faults and stratigraphic features, the diffu-

sion-tensor field should be defined differently. As shown in Figure 1,
the eigenvectors v (Figure 1b) are orthogonal to the channel and
fault-strike directions, whereas the eigenvectors w (Figure 1c)
are locally parallel to the channel and fault strikes. Therefore,
we should smooth the elements of the structure tensors along vec-
tors w to laterally enhance faults and stratigraphic features but avoid
smoothing along vectors v, which will laterally blur them.
Faults are not only laterally extended in the strike directions, but

they also are dipping in some directions. Therefore, in addition to
smoothing along the strike directions, we also expect to smooth
along the fault-dip directions to enhance faults. It is difficult to es-
timate fault-dip directions directly from a seismic image, but the
eigenvectors u in many cases can provide reasonable estimations
of the fault-dip directions (Bakker, 2002; Hale, 2009). Some
large-scale channels may produce incised valleys, which can be sig-
nificantly large, so that the valley boundaries are visible as lateral
reflector discontinuities such as faults in a seismic image. Similarly,
the valley boundaries are also likely to be dipping in directions
perpendicular to the seismic reflectors. This means that we might
also use the eigenvectors u to approximate the dip directions of the
valley boundaries. Therefore, we may also want to smooth along the
eigenvectors u to enhance the channel boundaries and faults.
Based on the discussions above, I implement the anisotropic

smoothing h·is in equation 5 with the diffusion tensor D as follows
to enhance faults and stratigraphic features in structure tensors:

D ¼ μuuu⊤ þ μwww⊤; (7)

where the μu and μw are the constant parameters (between zero and
one) used to control the smoothing extents in directions of u and w.
I set 1 ≥ μw ≥ μu ≥ 0 to enhance stratigraphic features such as
channels, which are confirmed to seismic reflections. I set 1 ≥ μu ≥
μw ≥ 0 to enhance faults, which usually cut through multiple re-
flections.
After applying the approximately fault- and stratigraphy-oriented

smoothing to each element of the directional structure tensors (in
equation 5), I again compute the eigendecompositions of the
smoothed structure tensors and use the eigenvalues to compute
the coherence image as in equation 3. Figure 3b shows a coherence
image computed by setting μu ¼ 0.5 and μw ¼ 1 in constructing the
diffusion tensor field (equation 7) for the anisotropic smoothing h·is
in equation 5. Compared with the conventional structure-tensor-
based coherence image (Figure 3a), stratigraphic features are en-
hanced and the subtle channels (denoted by red arrows) are more
obvious in this new coherence image (Figure 3b). Compared with
this covariance-matrix-based coherence (Figure 2b), the new coher-
ence image (Figure 3b) displays cleaner and more continuous strati-
graphic features.
Figure 4a shows another 3D seismic image, from which a covari-

ance-matrix-based coherence image (Figure 4b) is computed with
nine traces and a vertical window of 12 samples. Many lateral dis-
continuities, including faults, are highlighted as relatively low val-
ues in this coherence image. However, some of the fault features are
noisy and might be difficult to track. Figure 5a shows a conven-
tional structure-tensor-based coherence image, in which the fault

Figure 4. (a) A 3D seismic image and (b) covariance-matrix-based
coherence image.

Figure 5. (a) Conventional and (b) directional structure-tensor-
based coherence images. In the areas highlighted by dashed red
circles, fault features in panel (b) are clearer and more continuous
than those in panel (a) and in the covariance-matrix-based coher-
ence (Figure 4b).
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features are blurred compared with the covariance-matrix-based co-
herence image (Figure 4b). Figure 5b shows a directional structure-
tensor-based coherence computed with μu ¼ 1 and μw ¼ 0.5. In the
areas denoted by the dashed red circles, this coherence image dis-
plays more continuous and traceable fault features compared with
the conventional structure-tensor- (Figure 5a) and the covariance-
matrix (Figure 4b)-based coherence images.

CONCLUSION

Two aspects make the directional structure-tensor-based coher-
ence be better than the conventional one to highlight faults and
stratigraphic features from a seismic image. First, I construct struc-
ture tensors with directional derivatives perpendicular and parallel
to seismic reflectors instead of vertical and horizontal derivatives.
Second, I smooth each element of the constructed tensors using ap-
proximately fault- and stratigraphy-oriented smoothing instead of
Gaussian smoothing.
Computing directional structure-tensor-based coherence is more

expensive than the conventional one because the anisotropic
smoothing for each element of structure tensors is more expensive
than Gaussian smoothing. Such anisotropic smoothing is applied
three times for constructing 2D structure tensors and six times
for 3D ones. With an eight-core computer, my implementation
of the method requires approximately 5 and 15 min, respectively,
to compute the coherence images in Figures 3b (140 × 880 × 500

samples) and 5c (210 × 920 × 825 samples).
In this paper, I used the eigenvectors u and w of conventional

structure tensors to approximate the fault dip and strike vectors,
and I applied smoothing in these dip and strike directions to en-
hance the faults. The approximations of the fault strikes and dips
are reasonable in many cases, but they can be poor for some exam-
ples. This indicates that the coherence image can be further im-
proved by using more accurate fault strikes and dips. Such fault
strikes and dips might be estimated from a precomputed fault-attrib-
ute image.
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