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ABSTRACT

We have designed a deep-learning workflow to interac-
tively track seismic geobodies. The algorithm is based on
a flood-filling network, which performs iterative segmenta-
tion and moving the field of view (FoV). The proposed net-
work takes the previous mask output, together with the
seismic image in a new FoV, as a combined input to predict
the mask at this FoV. The movement of the FoV is guided by
the flood-filling algorithm to visit and segment the full extent
of a geobody. Unlike conventional seismic image segmenta-
tion methods, the proposed workflow can not only detect geo-
bodies, but it can also track individual geobody instances.

INTRODUCTION

Traditional seismic interpretation tasks such as fault and salt detec-
tion are tedious manual time-consuming processes. While the size of
seismic data sets continues to increase, it becomes prohibitively ex-
pensive to rely on detailed human work. This motivates many attempts
of computational-based methods to automate seismic interpretation.
Deep learning methods, mostly based on convolutional neural net-

works (CNN), are promising techniques for this subject. Seismic fault
analysis is the first topic that is addressed by many deep learning
interpretation methods. Previous studies (Araya-Polo et al., 2017;
Huang et al., 2017; Guitton, 2018; Guo et al., 2018; Zhao and Mu-
khopadhyay, 2018) propose various CNN-based patch-wise fault de-
tection algorithms to classify the fault/nonfault attribute on a seismic
image voxel given its local image patch. Wu et al. (2018b) addition-
ally predict patch-wise fault plane orientation information. Patch-
wise CNN-based methods are prone to expensive computational cost;

to mitigate this issue and further improve the quality, some authors
(Pham et al., 2018; Shi et al., 2018; Wu et al., 2019) develop methods
based on an encoder-decoder architecture to perform salt body, chan-
nel, and fault analysis, respectively. These works consider interpre-
tation as image segmentation problems. Zhao (2018) applies the
encoder-decoder architecture to facies classification and compares
it to traditional patch-wise classification.
However, a critical process leading to the practical interpretation

analysis is still missing: These methods generate likelihood images but
lack the ability to identify individual geobody instances. This means
that interpreters would have to scan through the likelihood images,
skeletonize the attributes, and create a geologic model. In the field
of neurobiology research, similar issues occur when reconstructing
neurons from large electron microscope image data. Such postprocess-
ing to obtain object detections from probability volume is proven to be
prohibitively expensive evenwith an optimized pipeline (Berning et al.,
2015). New technologies such as graph cut, cluster analysis, and
tracking are necessary to fill this gap in an automated interpretation
workflow (Beier et al., 2017; AlRegib et al., 2018). Additionally, the
variety of field data demands interaction between the end user and
workflow to adjust the algorithm to different situations. Current deep
learning-based methods only allow knowledgeable adjustments on
the training end, including hyperparameters and training samples,
but not on the other end that performs inference on field data.
We propose to adopt the flood-filling network (FFN) algorithm,

designed and proposed by Januszewski et al. (2018) for electron mi-
croscope neuron reconstruction, as a suitable architecture. Although
the encoder-decoder network predicts geobody likelihood, FFN runs
similarly but takes geobody likelihood as an additional input channel
in a recurrent way. The network iteratively performs prediction in a
relatively small field of view (FoV) and takes the output from the
previous step as a new input. To interactively track seismic geobodies
based on the FFN algorithm starting at a given seed point, the net-
work finds the next possible movement according to the prediction to
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track the whole geobody, gradually building a queue to fill the en-
tirety of a geobody. The network predicts each location in this queue
until it is exhausted. All geobody instances can be automatically sep-
arated and identified in this fashion, with more knowledgeable con-
trols even after training to adjust to various situations such as seed
point, tracking length, and connectivity threshold.

MODEL ARCHITECTURE

Encoder-decoder type networks, such as the one proposed by Shi
et al. (2018), formulate geologic feature detection as a segmentation
problem, which usually takes seismic amplitude or other attributes
as input and outputs geobody likelihood values. This type of neural
network has a fixed receptive field size, thus limiting the input size
for each prediction pass. In seismic images, geologic features such
as faults or channels often span a larger area. To cover these areas, it
is necessary to either design a network with large receptive field
size, which is currently computationally unfeasible (particularly
in 3D) or use the sliding window method and then patch all of
the window predictions. However, prediction quality degrades near

Figure 1. (a) The architecture of the proposed iterative workflow.
We use a modified U-net model (Ronneberger et al., 2015) as the
segmentation core and form a recurrent style architecture. (b) The
scheme of the FoV movement. Starting at the centroid of the FoV,
the algorithm searches along the borders with distance δ to the cent-
roid and locates four maximum likelihood points, qx−, qxþ, qy−, and
qyþ, as movement proposals.

Figure 2. The prediction iteration on a seismic salt body image. Starting from the yellow cross as the seed point, the model performs a
segmentation, movement, and likelihood update simultaneously. The cyan box represents the FoV position.
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the boundary regions. Therefore, it is natural that we formulate this
process as an automatic tracking workflow: The network performs
segmentation with the mask as a first channel and images the second
channel, where the first channel is replaced by output from the pre-
vious pass.
The architecture of the network is shown in Figure 1a. We use a

modified U-net (Ronneberger et al., 2015) model as the segmenta-
tion core and form a recurrent style architecture. The seismic image
within the FoV and a shifted geologic feature likelihood within the
same FoV form a two-channel input into the encoder-decoder net-
work. Initially, the FoV is placed at a user-specified seed point in-
side or near the desired geologic feature. For the
first run, the likelihood channel should be empty
and disregarded; this run is the same as tradi-
tional end-to-end seismic image segmentation.
The difference comes when the first run outputs
the first likelihood prediction: The proposed
method finds the next probable locations within
the geobody adjacent to the seed point according
to the likelihood map, moves the FoV there, and
repeats this process. Each step will update a
global likelihood map within the FoV, and all
of the steps eventually process the entirety of the
geobody.
The movement of the FoV is guided by the

flood-filling algorithm according to the follow-
ing rule: After each run, the algorithm scans
through the four boundary lines (or six boundary
surfaces in 3D) adjacent to the current FoV cent-
roid with step size δ, as shown in Figure 1b. The
scan will find four maximum likelihood points,
qx−, qxþ, qy−, and qyþ, as movement proposals
on each boundary line. All of the proposals are
checked by these criteria: (1) The likelihood
value at the proposed location LðqÞ is larger than
a given threshold T and (2) the distance between
the proposed location and all previously visited
FoV centroids is larger than step size δ. Accord-
ing to our tests, adjusting T and δ does not impact
the precision but only on the computational cost.
If a proposed point qi satisfies the criteria, we
add it into a queue Q ¼ fq1; q2; : : : g. At the
next step, Q pops a new FoV centroid and per-
forms a segmentation, likelihood update, and
movement proposal in this fashion iteratively un-
til Q is exhausted. Unlike optimization methods
that can perform poorly near local minima, the
flood-fill algorithm recursively builds a queue
on the fly with the aforementioned criteria. The
algorithm is guaranteed to end without an explicit
terminating condition, instead of entering into an
infinite loop.
In this section, we demonstrate the workflow

on salt body interpretation. The seismic image is
cropped from the SEAM Phase 1 synthetic data
set (Fehler and Keliher, 2011). We selected eight
crossline 2D slices as training data. The training
labels are manual annotations generated by an
optimal path picking method (Wu et al., 2018a).

We set the FoV size for 2D salt body interpretation to 127 × 127.
In the network, we downsample the inputs three times with 2× max
pooling every two convolutional layers (six layers in total) in the
encoder section and symmetrically upsample in the decoder section.
Because the input dimension is downsampled 8× in total before
upsampling, the FoV is zero-padded to 128 × 128, and it is cropped
to the original size at the final output.
To train the model to move the FoV effectively, we adopt a

“dynamic subregion” scheme to constrain the movements of the
FoV during training. A limited number of subregions are randomly
sampled from each training image so that all subregions are cen-

Figure 3. Comparison of the predictions on several seismic images using the previous
work by Shi et al. (2018) (the left column) and using the proposed method (the right
column). The prediction salt likelihood is overlaid on the seismic image. Notice that a
“blind zone” exists on the boundaries of the right column images. This is because we
limit the FoVs to not move outside the image, leaving a blind zone on the boundary with
size δ.
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tered within the valid geobody. In the first epoch, the subregions
have the same size as the FoV, so the network only learns how
to segment the input image without actually moving the FoV. After
that, the subregions grow in size until hitting the 256 × 256 limit
on each new epoch. This way, the network gradually learns to move
the FoV based on previous segmentation results further and further
away from the starting point. We train the model for five epochs.
Because intersection-over-union is sensitive to the classifying
threshold, we use the area under the curve (AUC) (Hanley and
McNeil, 1982) to measure the precision-recall relationship with dif-
ferent classifying threshold values. The training took fewer than
5 hours with a GTX 1080-Ti GPU. The AUC reaches 99.23% on
the validation data set that is held out from the training.

SALT BODY EXAMPLE

Figure 2 demonstrates the iteration process on a seismic salt body
image after training. Starting with a seed point indicated by the
yellow cross (representing the user input), the model performs a
segmentation, movement, and likelihood update simultaneously
at each iteration. Within 201 steps, the salt body is fully explored
and the iteration is terminated. This process took 13 s to complete
with a GTX 1080-Ti GPU. Note that the number of iterations can be
decreased with a larger FoV moving step size.

Figure 3 shows more examples that compare the results of the
proposed method and those from the previous work by Shi et al.
(2018). Although the model is trained with images selected from
crossline sections (the proposed method and the work to be com-
pared), some of these test examples use images selected from inline
sections. We can notice a significant improvement in the prediction
quality with the FFN method, especially where the image is noisy
near salt base regions. The reflectivity also looks more consistent
and more intact with the proposed method, without many false neg-
atives inside the geobody.

FAULT-PICKING EXAMPLE

We generated 2000 synthetic 2D fault image samples for training
and another 2000 images for testing via the method described by
Wu et al. (2019). These images are all 128 × 128 in size and contain
various types of geologic transformations including deposition,
folding, shearing, and faulting. We set the FoV size in this case
as 79 × 79. The training lasts for 10 epochs, reaches an average
of 97.42% AUC on the test data, and takes 9 hours to complete with
a GTX 1080-Ti GPU.
Figure 4 shows examples of fault tracking, in which the yellow cross

stands for the starting point, the red dots stand for all the FoV centers
that the FoV has visited during the iteration, and the fault likelihood
map is overlaid on the background image. Figure 4a, 4b, and 4c shows

Figure 4. Demonstration of separate instance picking using the proposed method. In this example, fault tracking starts from the yellow cross as
the seed point. The red dots stand for all of the FoV centers that the FoV has visited during the iteration. The three faults in the image are picked
in (a-c) and are highlighted in different colors in (d-f), respectively.
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examples of picking only one fault instance with other faults in the
vicinity. In Figure 4b, even though the seed point is slightly off
from the correct fault position, flood filling can automatically correct
to align with the fault. Figure 4d, 4e, and 4f shows all three fault
instances generated in Figure 4a–4c, respectively. This demonstrates
the ability to separate geobody instances with the same attribute.

DISCUSSION

Transferring this method to 3D could be more potential. In ad-
dition to the salt body and fault interpretation, the proposed method
can be suitable for 3D channel tracking (Pham et al., 2018). How-
ever, special care should be taken when extending this method to
field data. For example, real images will be noisy, salt bodies may
not be perfectly migrated during interpretation, and the frequency
range of the training data should match the field data.
However, the proposed method may not perform well trying to use

physical information to separate overlapping instances, for example,
crossing faults with different strike/dip. This is because each FoV
searches for the proposal for the next movement in all directions
equally. Wu et al. (2018b) show that deep learning can predict fault
dip and strike angle. Because fault dip and strike angle are important
parameters that describe fault geometry, integrating them can help
guide the flood-filling search pattern to solve the crossing-fault issue.

CONCLUSION

We propose a recurrent style geobody tracking workflow based
on an FFN algorithm. The workflow provides two major improve-
ments over previous methods: The tracking algorithm allows, for
instance, separation during segmentation, and the atomic design
allows for more interaction on the user side to control the model
application on various data sets.
We tested the model on 2D salt body synthetic examples and

fault-picking synthetic examples. The salt body synthetic example
shows that the iterative pattern in the model architecture improves
the segmentation significantly compared to the encoder-decoder
network architecture. The fault-picking synthetic examples demon-
strate that the proposed workflow can separate multiple instances
with the same classification attribute.

ACKNOWLEDGMENTS

The authors are grateful to R. Abma and D. Abma for their review
and comments. We appreciate the financial support from the spon-
sors of the Texas Consortium for Computational Seismology. We
thank the Texas Advanced Computing Center and the NVIDIA
GPU Grant Program for providing the computational resources.

DATA AND MATERIALS AVAILABILITY

Data associated with this research are confidential and cannot be
released.

REFERENCES

AlRegib, G., M. Deriche, Z. Long, H. Di, Z. Wang, Y. Alaudah, M. Shafiq,
and M. Alfarraj, 2018, Subsurface structure analysis using computational
interpretation and learning: A visual signal processing perspective: ar-
Xiv:1812.08756.

Araya-Polo, M., T. Dahlke, C. Frogner, C. Zhang, T. Poggio, and D. Hohl,
2017, Automated fault detection without seismic processing: The Leading
Edge, 36, 208–214, doi: 10.1190/tle36030208.1.

Beier, T., C. Pape, N. Rahaman, T. Prange, S. Berg, D. D. Bock, A. Cardona,
G. W. Knott, S. M. Plaza, L. K. Scheffer, and U. Koethe, 2017, Multicut
brings automated neurite segmentation closer to human performance:
Nature Methods, 14, 101–102, doi: 10.1038/nmeth.4151.

Berning, M., K. M. Boergens, and M. Helmstaedter, 2015, SegEM: Efficient
image analysis for high-resolution connectomics: Neuron, 87, 1193–
1206, doi: 10.1016/j.neuron.2015.09.003.

Fehler, M. C., and P. J. Keliher, 2011, SEAM phase I: Challenges of subsalt
imaging in tertiary basins, with emphasis on deepwater Gulf of Mexico:
SEG.

Guitton, A., 2018, 3D convolutional neural networks for fault interpretation:
80th Annual International Conference and Exhibition, EAGE, Extended
Abstracts, 1–5, doi: 10.3997/2214-4609.201800732.

Guo, B., L. Li, and Y. Luo, 2018, A new method for automatic seismic fault
detection using convolutional neural network: 88th Annual International
Meeting, SEG, Expanded Abstracts, 1951–1955, doi: 10.1190/
segam2018-2995894.1.

Hanley, J. A., and B. J. McNeil, 1982, The meaning and use of the area under
a receiver operating characteristic (ROC) curve: Radiology, 143, 29–36,
doi: 10.1148/radiology.143.1.7063747.

Huang, L., X. Dong, and T. E. Clee, 2017, A scalable deep learning platform
for identifying geologic features from seismic attributes: The Leading
Edge, 36, 249–256, doi: 10.1190/tle36030249.1.

Januszewski, M., J. Kornfeld, P. H. Li, A. Pope, T. Blakely, L. Lindsey, J.
Maitin-Shepard, M. Tyka, W. Denk, and V. Jain, 2018, High-precision
automated reconstruction of neurons with flood-filling networks: Nature
Methods, 15, 605–610, doi: 10.1038/s41592-018-0049-4.

Pham, N., S. Fomel, and D. Dunlap, 2018, Automatic channel detection us-
ing deep learning: 88th Annual International Meeting, SEG, Expanded
Abstracts, 2026–2030, doi: 10.1190/int-2018-0202.1.

Ronneberger, O., P. Fischer, and T. Brox, 2015, U-net: Convolutional net-
works for biomedical image segmentation: International Conference on
Medical Image Computing and Computer-assisted Intervention, Springer,
234–241.

Shi, Y., X. Wu, and S. Fomel, 2018, Automatic salt-body classification using
a deep convolutional neural network: 88th Annual International Meeting,
SEG, Expanded Abstracts, 1971–1975, doi: 10.1190/segam2018-
2997304.1.

Wu, X., S. Fomel, and M. Hudec, 2018a, Fast salt boundary interpretation
with optimal path picking: Geophysics, 83, no. 3, O45–O53, doi: 10
.1190/geo2017-0481.1.

Wu, X., L. Liang, Y. Shi, and S. Fomel, 2019, FaultSeg3D: using synthetic
datasets to train an end-to-end convolutional neural network for 3D seis-
mic fault segmentation: Geophysics, 84, no. 3, IM35–IM45, doi: 10.1190/
geo2018-0646.1.

Wu, X., Y. Shi, S. Fomel, and L. Liang, 2018b, Convolutional neural
networks for fault interpretation in seismic images: 88th Annual
International Meeting, SEG, Expanded Abstracts, 1946–1950, doi: 10
.1190/segam2018-2995341.1.

Zhao, T., 2018, Seismic facies classification using different deep convolu-
tional neural networks: 88th Annual International Meeting, SEG, Ex-
panded Abstracts, 2046–2050, doi: 10.1190/segam2018-2997085.1.

Zhao, T., and P. Mukhopadhyay, 2018, A fault detection workflow using
deep learning and image processing: 88th Annual International Meeting,
SEG, Expanded Abstracts, 1966–1970, doi: 10.1190/segam2018-
2997005.1.

Biographies and photographs of the authors are not available.

Tracking geobodies using FFN A5

D
ow

nl
oa

de
d 

01
/0

6/
21

 to
 2

22
.1

95
.7

6.
94

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
S

E
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

s:
//l

ib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:1

0.
11

90
/g

eo
20

20
-0

04
2.

1

http://dx.doi.org/10.1190/tle36030208.1
http://dx.doi.org/10.1190/tle36030208.1
http://dx.doi.org/10.1190/tle36030208.1
http://dx.doi.org/10.1038/nmeth.4151
http://dx.doi.org/10.1038/nmeth.4151
http://dx.doi.org/10.1038/nmeth.4151
http://dx.doi.org/10.1016/j.neuron.2015.09.003
http://dx.doi.org/10.1016/j.neuron.2015.09.003
http://dx.doi.org/10.1016/j.neuron.2015.09.003
http://dx.doi.org/10.1016/j.neuron.2015.09.003
http://dx.doi.org/10.1016/j.neuron.2015.09.003
http://dx.doi.org/10.1016/j.neuron.2015.09.003
http://dx.doi.org/10.3997/2214-4609.201800732
http://dx.doi.org/10.3997/2214-4609.201800732
http://dx.doi.org/10.3997/2214-4609.201800732
http://dx.doi.org/10.1190/segam2018-2995894.1
http://dx.doi.org/10.1190/segam2018-2995894.1
http://dx.doi.org/10.1190/segam2018-2995894.1
http://dx.doi.org/10.1190/segam2018-2995894.1
http://dx.doi.org/10.1148/radiology.143.1.7063747
http://dx.doi.org/10.1148/radiology.143.1.7063747
http://dx.doi.org/10.1148/radiology.143.1.7063747
http://dx.doi.org/10.1148/radiology.143.1.7063747
http://dx.doi.org/10.1148/radiology.143.1.7063747
http://dx.doi.org/10.1190/tle36030249.1
http://dx.doi.org/10.1190/tle36030249.1
http://dx.doi.org/10.1190/tle36030249.1
http://dx.doi.org/10.1038/s41592-018-0049-4
http://dx.doi.org/10.1038/s41592-018-0049-4
http://dx.doi.org/10.1190/int-2018-0202.1
http://dx.doi.org/10.1190/int-2018-0202.1
http://dx.doi.org/10.1190/int-2018-0202.1
http://dx.doi.org/10.1190/segam2018-2997304.1
http://dx.doi.org/10.1190/segam2018-2997304.1
http://dx.doi.org/10.1190/segam2018-2997304.1
http://dx.doi.org/10.1190/segam2018-2997304.1
http://dx.doi.org/10.1190/geo2017-0481.1
http://dx.doi.org/10.1190/geo2017-0481.1
http://dx.doi.org/10.1190/geo2017-0481.1
http://dx.doi.org/10.1190/geo2018-0646.1
http://dx.doi.org/10.1190/geo2018-0646.1
http://dx.doi.org/10.1190/geo2018-0646.1
http://dx.doi.org/10.1190/geo2018-0646.1
http://dx.doi.org/10.1190/segam2018-2995341.1
http://dx.doi.org/10.1190/segam2018-2995341.1
http://dx.doi.org/10.1190/segam2018-2995341.1
http://dx.doi.org/10.1190/segam2018-2997085.1
http://dx.doi.org/10.1190/segam2018-2997085.1
http://dx.doi.org/10.1190/segam2018-2997085.1
http://dx.doi.org/10.1190/segam2018-2997005.1
http://dx.doi.org/10.1190/segam2018-2997005.1
http://dx.doi.org/10.1190/segam2018-2997005.1
http://dx.doi.org/10.1190/segam2018-2997005.1

