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ABSTRACT

Picking horizons from seismic images is a fundamental
step that could critically impact seismic interpretation quality.
We have developed an unsupervised approach, waveform em-
bedding, based on a deep convolutional autoencoder network
to learn to transform seismic waveform samples to a latent
space in which any waveform can be represented as an em-
bedded vector. The regularizing mechanism of the autoen-
coder ensures that similar waveform patterns are mapped to
embedded vectors with a shorter distance in the latent space.
Within a search region, we transform all of the waveform
samples to the latent space and compute their corresponding
distance to the embedded vector of a control point that is set to
the target horizon. We then convert the distance to a horizon
probability map that highlights where the horizon is likely to
be located. This method can guide horizon picking across lat-
eral discontinuities such as faults, and it is insensitive to noise
and lateral distortions. In addition, our unsupervised learning
algorithm requires no training labels. We apply our horizon-
picking method to multiple 2D/3D examples and obtain re-
sults more accurate than the baseline method.

INTRODUCTION

In seismic interpretation, picking and tracking laterally consistent
seismic reflectors as seismic horizons is a key step for the purpose
of mapping geologic structures, stratigraphy, and reservoir architec-
ture (Wu and Hale, 2013). Seismic horizons represent stratigraphic
surfaces of constant geologic time (Vail et al., 1977). Many geologic
analyses are performed on horizon surfaces. Therefore, the accuracy
of the horizon picking is critical to all of the ensuing interpretation
tasks. However, the growth of seismic data volumes significantly

increases the workload and duration of manual horizon extraction.
It is necessary to aid human interpreters with automated, yet accu-
rate and reliable, techniques.
Many computer algorithms that automatically extract horizons

from seismic images have been proposed. Some methods are based
on local slopes that estimate the geometric orientations of seismic
reflections. The local slopes can be estimated by structure tensors
(Bakker, 2002; Hale, 2009; Wu and Janson, 2017), plane-wave de-
struction filters (Fomel, 2002), semblance scanning the (Marfurt,
2006), 2D log-Gabor filtering (Yu et al., 2013), smooth dynamic
image warping (Arias, 2016), and tracking the structure-oriented
vector field (Yu et al., 2011, 2012; Di et al., 2018). Fomel (2010)
picks horizons by starting from a seed point and recursively follow-
ing the local slopes. When multiple seed points are available, hori-
zons can be computed by fitting the slopes in the least-squares sense
(Lomask et al., 2006; Wu and Hale, 2013, 2015; Zinck et al., 2013;
Monniron et al., 2016). However, local slope-based methods often
fail in cases of lateral discontinuities (e.g., faults). Luo and Hale
(2013), Wu and Hale (2016), and Wu et al. (2016) address the prob-
lem by removing the faulting. Xue et al. (2018) incorporate fault
slip information in the tracking process. These methods all depend
on fault detection and interpretation, which is another challenging
task to be automated. On the other hand, some automatic horizon
picking methods are based on seismic phase and waveform and,
thus, can globally extract horizons by identifying the patterns in
the seismic waveforms. Hoyes and Cheret (2011) present a review
that summarizes global interpretation methods for 3D horizon map-
ping. Wu and Fomel (2018) propose a method to accurately extract
horizons by computing laterally multigrid slopes by directly corre-
lating seismic traces within multiple laterally coarse grids.
Machine learning shows its potential in seismic interpretation be-

cause of its power in solving computer vision problems. Many rel-
evant works demonstrate how to outperform conventional methods
by leveraging the power of machine learning. Zhao et al. (2015)
review some commonly used machine-learning methods for seismic
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facies classification such as principal component analysis, k-means
clustering, self-organizing maps, support vector machines, and artifi-
cial neural networks. Zhao (2017) shows that computers can learn to
perform repetitive tasks in geophysical interpretation and unravel the
relationship that underlies the patterns. Figueiredo et al. (2014) pro-
pose a clustering method using the growing neural gas algorithm,
which organizes the set of voxels according to a global criterion
in an unsupervised fashion, and then it classifies seismic waveforms
into these clusters and extracts the corresponding horizons. These
methods try to learn a transform to map seismic data to a latent space,
where it is easier to cluster or separate the data samples for performing
classification. However, these methods still have difficulties when
dealing with complex real data. The relatively simple transform ker-
nels of these machine-learning algorithms prevent them from learning
complex transforms that are required to handle real data. Recently,
deep neural networks, especially convolutional neural networks, have
been widely applied to seismic interpretation problems because they
are suited well for complex visual analysis. Compared with traditional
machine-learning methods, deep neural networks can automatically
extract useful features during the training process and achieve com-
plex tasks. Deng et al. (2010) design an autoencoder network that
learns latent speech embedding that explores the data structure by
transforming input data to a latent space and represent each data
with an embedded vector. Xie et al. (2016) show that deep embedding
clustering can outperform traditional clustering methods. Qian et al.
(2018) propose a convolutional autoencoder to perform unsupervised
seismic facies analysis from prestack data. Peters et al. (2019) show a
seismic horizon tracking method that trains multiresolution neural
networks to predict horizons at unknown locations; but this is a su-
pervised method that requires some manual interpretation results.
We propose a new method, waveform embedding, to accurately

extract horizons based on a deep convolutional autoencoder net-
work. The network learns to transform seismic waveform samples
to a latent space in which all waveforms can be represented as an
embedded vector. The additional regularizing mechanism of the au-
toencoder ensures that similar waveform patterns are mapped to em-
bedded vectors with a shorter distance in the latent space. Starting
from one or more control points, we compute an initial horizon es-
timation using the traditional local slope-based method and locate a
search region around this initial horizon to sample waveforms. Then,
we train the network with these samples, transform the waveforms to
latent space, and compute their embedded distances to the embedded
vector corresponding to the control points. We convert these distan-
ces to a horizon probability map where shorter distances stand for
high similarities and higher probabilities and longer distances stand
for low similarities and low probabilities. Finally, we can find a hori-
zon curve (in two dimensions) or surface (in three dimensions) from
this probability map by picking through the high values. We show
multiple 2D and 3D examples to demonstrate that the proposed
method can generate accurate and reliable results across discontinu-
ities and outperform the conventional methods in real data tests.

METHODOLOGY

Initial horizon estimation: Slope-based method

Although local slope-based horizon extraction methods are not
capable of tracking horizons correctly across faults, they are relatively
efficient to compute an initial horizon estimation. We use structure
tensors (Bakker, 2002; Hale, 2009; Wu and Janson, 2017) to estimate

local slopes of the seismic reflections. The 2D structure tensors are
2 × 2 symmetric positive semidefinite matrices that can be repre-
sented as the following eigendecompositions:

T ¼ λuuuT þ λvvvT; (1)

where u and v are the normalized eigenvectors corresponding to the
eigenvalues λu and λv, respectively. By assuming λu ≥ λv, the corre-
sponding eigenvectors u are perpendicular to the seismic reflections,
whereas the eigenvectors v are parallel to the reflections. Equation 1
can be generalized for 3D structure tensors as

T ¼ λuuuT þ λvvvT þ λwwwT: (2)

Without a loss of generality, we can assume λu ≥ λv ≥ λw. Therefore,
the normalized eigenvectors u are perpendicular to the seismic reflec-
tions, whereas the eigenvectors v and w are parallel to the reflections
and perpendicular to each other. The eigenvalues λu, λv, and λw are
useful to measure the linearity (2D) or planarity (3D) of the seismic
reflections (Hale, 2009; Wu, 2017):

cðxÞ ¼ λuðxÞ − λvðxÞ
λuðxÞ

; (3)

where 0 ≤ cðxÞ ≤ 1 describes the continuities of the seismic reflec-
tions. Assuming that the reflection normal vectors u always point
downward, we can compute the inline and crossline local slopes as

pðxÞ ¼ −
u2ðxÞ
u1ðxÞ

; and qðxÞ ¼ −
u3ðxÞ
u1ðxÞ

; (4)

where u1; u2,and u3 are the vertical, inline, and crossline components
of the normal vectors u, respectively, and p and q are the inline and
crossline local slopes, respectively.
After obtaining local slopes of the seismic reflections, we can

find a slope-based horizon picking result by fitting the slopes in the
least-squares sense (Lomask et al., 2006; Wu and Hale, 2013, 2015;
Zinck et al., 2013; Monniron et al., 2016):

!
cðx; zðxÞÞ ∂zðxÞ

∂x
μ ∂2zðxÞ

∂x2

"
≈
!
cðx; zðxÞÞpðx; zðxÞÞ

0

"
; (5)

where zðxÞ represents the target horizon. The first equation in
equation 5 is a fitting between horizon slopes ∂zðxÞ∕∂x and local
slope estimations pðx; zðxÞÞ weighted by e thlinearity attribute
0 ≤ cðx; zðxÞÞ ≤ 1 defined in equation 3. The weighting helps to
reduce the effects of unstable local slope estimations at discontinu-
ous areas when linearity values are low, and it helps to put more
weights on local slope estimations where linearity values are high.
The second equation is a regularization term to impose smoothness
to the horizon zðxÞ, where μ is a small constant to control smooth-
ness. Equation 5 can be extended to 3D least-squares horizon sur-
face fitting as

2

664

cðx; y; zðx; yÞÞ ∂zðx;yÞ∂x
cðx; y; zðx; yÞÞ ∂zðx;yÞ∂y

μ
#
∂2zðx;yÞ
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∂y2

$

3

775 ≈

"cðx; y; zðx; yÞÞpðx; y; zðx; yÞÞ
cðx; y; zðx; yÞÞqðx; y; zðx; yÞÞ

0

#

:

(6)
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To solve those equations, we need several known control points pro-
vided as boundary conditions. Suppose we have Nc control points
ðxc; zcÞ, c¼ 1; 2; : : : ; Nc, we can incorporate the hard constraints
zðxcÞ ¼ zc, c¼ 1; 2; : : : ; Nc to the fitting equations and solve the
problem iteratively using a conjugate gradient solver with a con-
straint preconditioner as discussed by Wu and Hale (2015).
As an example in Figure 1a, we start with a control point (the red

cycle) and compute a horizon extraction (the yellow curve) with
local slopes least-squares fitting with the method described above.
Although the horizon follows seismic reflection closely, it fails to
correctly shift at the seismic fault to consistently track the reflection
phase. We flatten the seismic image around the horizon extraction as
shown in Figure 1b. We can observe that the local slope-based
method yields a horizon parallel to the reflections but cannot cor-
rectly track the horizon across the fault.

Baseline method: Multigrid correlations

The horizon extraction method that only depends on local slope
estimations are often inaccurate in discontinuous areas with noise,
chaotic reflections, or faults as shown in Figure 1, other information
that can “propagate” across the fault should be used to solve such a
problem. Correlating seismic waveforms on the opposite sides of the
faults can help to guide the slope-based horizon-tracking algorithm.
Wu and Fomel (2018) propose a method that fits a horizon in the

least-squares sense with the local slopes and spatially more global
reflection correlations: the least-squares horizon with multigrid

correlations. The method can correlate reflections that are spatially
far away from each other, in laterally coarser grids. The pairwise
correlation of waveforms are efficiently computed using dynamic
time warping (Hale, 2013). These coarse grid correlations introduce
additional constraint equations to equations 5 and 6. These indepen-
dent constraints can provide multiscale information in tracking the
target horizon. In cases in which local slopes cannot correctly fol-
low reflections across discontinuities, the multigrid correlation can
provide coarse-grid slopes that help to correct the errors and find the
right reflections to continue tracking.
We will use the multigrid correlation method as a baseline conven-

tional horizon extraction method to compare its performance with the
proposed waveform embedding deep-learning-based method. Fig-
ure 2 shows the result of horizon picking using the multigrid corre-
lation method with the same image and control point as shown in
Figure 1. We observe that the multigrid correlation method success-
fully finds the correct horizon across the fault region because the
waveform correlations on the opposite sides of the fault force the
horizon to track the correct phase, in this case, at the end of the neg-
ative wavelet peak. However, close examination of the flattened im-
age in Figure 2b reveals that the horizon extracted by the multigrid
correlation method deviates downward from the correct horizon,
from left to right. This is due to the lateral change along the horizon
(as shown with the wiggles) misleading the correlation: The reflec-
tion wavelet frequency is lower on the right side compared to the left

Figure 1. (a) We start with a control point (the red cycle) and com-
pute a horizon extraction (the yellow curve) with local slopes least-
squares fitting. Although the horizon follows seismic reflection
closely, it fails to correctly shift at the seismic fault to consistently
track the reflection phase. We sample waveforms around this horizon
(the blue mask) to train the unsupervised deep network in the pro-
posed workflow. (b) We flatten the seismic image around the horizon
extraction, and we can observe that the local slope-based method
yields a horizon parallel to the reflections but cannot correctly track
the horizon across the fault.

Figure 2. The result of horizon picking using the multigrid corre-
lation method with the same image and control point as shown in
Figure 1. (a) Multigrid correlation method successfully finds a fix
across the fault region because the waveform correlations on the op-
posite sides of the fault force the horizon to track the correct phase.
However, close examination of the flattened image in (b) reveals that
the horizon extracted by the multigrid correlation method is deviating
downward from the correct horizon, from left to right. This is due
to the lateral change along the horizon (as shown in the wiggles)
misleading the correlation: The reflection wavelet frequency is lower
on the right side compared to the left side due to lateral geologic
distortion.

Waveform embedding for horizon picking WA69

D
ow

nl
oa

de
d 

05
/1

0/
20

 to
 2

22
.1

95
.7

9.
15

4.
 R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s o
f U

se
 a

t h
ttp

://
lib

ra
ry

.se
g.

or
g/



side due to the lateral geologic distortion. Although the multigrid cor-
relation method could improve the horizon tracking result across the
fault, correlation itself may not be adequate to handle these subtle
changes to output a precise and reliable horizon estimation.

Waveform embedding: Deep-learning approach

Compared with conventional methods and traditional machine-
learning methods, deep neural networks can automatically extract
useful features and during the training process and achieve complex
tasks. Deng et al. (2010) design an autoencoder network that learns
latent speech embedding and can explore the data structure by trans-
forming input data to a latent space and represent each datum with an
embedded vector. We propose to build an autoencoder network and
train it with seismic reflection waveform data samples to learn
implicit features from these waveforms represented by a latent space.
An autoencoder consists of two parts: the encoder and the

decoder, which can be defined as two nonlinear transform operators
ϕ and ψ , such that

ϕ∶X → F ;

ψ∶F → X ;

where ϕ;ψ ¼ argminϕ;ψkX − ðψ°ϕÞXk2: (7)

The autoencoder network X → F → X transforms an input wave-
form data X to the latent space F , then back to the original data
space X . The training is done by minimizing the reconstruction dis-
crepancy between X and ðψ ∘ ϕÞX. If the network can reconstruct
the input X after training with many samples from X , this means
that operator ϕ retains most of the essential information of X and
encodes all possible X into the latent space F . By incorporating
regularization to the F , the network can learn a useful latent space
that separates/clusters the waveforms by their visual features. The
vector ϕX in latent space F is the embedded vector that represents
all the features extracted from the waveform X; therefore, we call
this process waveform embedding.
To effectively extract visual features from waveform samples,

we build a deep convolutional autoencoder network as shown in

Figure 3. The encoder consists of cascading convolutional layers
with poolings (downsampling) and nonlinear activations. Because
seismic waveforms are one dimensional, we use 1D convolutions.
We also introduce a residual convolutional block, introduced by He
et al. (2016), to achieve better performance and training efficiency.
The encoder ends with a latent vector generator, for which we in-
vestigate three different choices: first, directly copying the convolu-
tional output as latent vectors; second, sampling latent vectors from
known prior information (usually Gaussian); and third, quantizing
the latent space and sampling from the quantizations. These differ-
ent latent vector generators result in three different types of deep
autoencoders: naive autoencoder, variational autoencoder (VAE)
(Kingma and Welling, 2013), and vector-quantized VAE (VQ-
VAE) (van den Oord and Vinyals, 2017).
On the decoder side, the latent vector will pass through a decoder,

which is symmetric to the encoder. Instead of downsampling, the
decoder layers upsample by transposed convolutions (Noh et al.,
2015; Dumoulin and Visin, 2016) to reconstruct the original wave-
form. This type of downsample-upsample shape works as a regu-
larization: An information bottleneck at the center of the network
forces it to learn essential information in the latent space and discard
irrelevant noise features.

Different types of autoencoders

A naive autoencoder passes the output Z ¼ ϕX to the decoder as
the input X̄ ¼ ψZ. A naive autoencoder is easy to build and train;
however, it has no additional regularization on the latent space to
better explore the visual features of the waveform (e.g., clustering
the samples with similar waveforms).
VAE, proposed by Kingma and Welling (2013), provides a prob-

abilistic manner for describing the observation in latent space. In-
stead of outputting deterministic embedded vectors, the encoder in
VAE outputs a probability distribution for each latent feature. The
output of the encoder and decoder can be formulated as

Z ¼ ϕX ∼ qðZjXÞ; and X̄ ¼ ψZ ∼ pðXjXÞ: (8)

To control the distribution of the latent vector Z, the following Kull-
back-Leibler (KL) loss regularizes Z to be inde-
pendent unit Gaussian distribution N ð0; IÞ:

LKL ¼ DKLðqðZjXÞjpðZÞÞ; (9)

where KL divergence DKL is defined as

DKLðPjQÞ ¼
X

X

PðXÞ logðPðXÞ∕QðXÞÞ:

(10)

Van den Oord and Vinyals (2017) propose a
variation of the VAE, VQ-VAE, in which the
encoder outputs a discrete, rather than continu-
ous, latent space with a data-driven learned prior
distribution rather than a static predefined prior.
It learns latent transform efficiently by updating a
discrete latent prior distribution together with the
encoder and decoder while training.
We build these three types of autoencoders

and implement them using naive autoencoder
Figure 3. Illustration of the autoencoder network architecture that we implement for the
waveform embedding method.
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PyTorch library (Paszke et al., 2019). All of these implementations
share the same encoder and decoder setups as shown in Figure 3,
and they have an 8D latent space to ensure a fair comparison.

Train with waveform data

We train and test the networks with the seismic waveforms shown
in Figure 1. We randomly extract waveforms with 32 vertical sam-
ples from the blue highlighted region in Figure 1a, and we use these
data to train the autoencoder network. Note that although the slope-
based method picks an incorrect horizon that fails to handle faults, it
provides an approximate trend that the true horizon should lie par-
allel to it nearby. Unsupervised learning does not require any train-
ing label. The slope-based horizon is only used to identify a region
from which we sample training data, so it does not matter whether
or not it gives an accurate horizon.
During training, we use an independent subset data from the same

region to validate the autoencoder performance by measuring the
mean-square-error (MSE) of the reconstructed waveform. Figure 4
shows the validation MSE of the three types of autoencoders. The
naive implementation and VQ-VAE outperform VAE after conver-
gence. Compared to AE, VAE introduces regularization in the latent
space prior; therefore, it would not be as good as AE that does not
have any regularization on the latent space. On the other hand, VQ-
VAE has a discretized latent distribution with data-driven learned
prior rather than static predefined prior; therefore, it can outperform
VAE in terms of reconstruction accuracy. Because VQ-VAE achieves
the best convergence and enables a regularized latent space prior
distribution, we choose this framework for horizon picking.

Convert horizon probability

After training, we can use the encoder part of the network to trans-
form any seismic waveforms to an embedded vector l. For each pixel
xin the search region (the blue highlighted region in Figure 1) around
the initial horizon estimation, we can sample a waveform centered at
the pixel and transform it to a latent vector lðxÞ, including the latent
vector lc of the control point(s). Because of the distribution of the
latent prior, similar waveforms will have embedded vectors with a
shorter distance d ¼ kl1 − l2k2. Therefore, we compute a normalized
embedded distance corresponding to each pixel x:

dcðxÞ ¼
klðxÞ − lck2

d0
; (11)

where d0 is a constant normalizing factor that we set as
0.9 ×maxðdÞ. Finally, we can convert the embedded distances to
a probability map pðxÞ using radial basis functions:

pcðxÞ ¼ e−dcðxÞ: (12)

Figure 5 shows the probability map, in which brightness represents
the horizon probability with regard to the control point. If multiple
control points are available (Nc > 1), we take the average horizon
probability of all the probability maps corresponding to each control
point. Using a picking method based on dynamic programming
(Sakoe et al., 1990), we can extract a path through the maximum pro-
babilities shown in Figure 6 as the horizon extraction result. Figure 7
summarizes the workflow in a flowchart.

APPLICATION EXAMPLES

By comparing Figure 6 to Figure 2, we can observe that the pro-
posed method correctly tracks the seismic phase along the target
horizon without being misled by the lateral distortion. This shows
that the waveform embedding method extracts subtle visual features
of the waveforms and outperforms waveform correlation. To further
demonstrate the superiority of waveform embedding, we apply
these methods to more 2D and 3D real data examples.

2D applications

The previous examples use a 2D data subset from the Teapot
Dome survey. Figure 8 shows the application on multiple horizons
with randomly positioned control points. Although the waveforms

Training samples ( 103 )×

R
ec

on
st

ru
ct

io
n 

lo
ss

 (
M

S
E

)

0.1

0.2

0.4

0.6

0.8

1

2

0 50 100 150

AE loss VAE loss VQ-VAE loss

Figure 4. The validation MSE of waveform reconstruction during
training of the three types of autoencoders. The naive autoencoder
and VQ-VAE outperform VAE after convergence. Compared to AE,
VAE introduces regularization in the latent space prior, and it is thus
inferior because AE has no regularization on the latent space. On the
other hand, VQ-VAE has a discretized latent distribution with a
data-driven learned prior rather than statically predefined prior;
therefore, it can outperform VAE in terms of reconstruction accu-
racy. Because VQ-VAE achieves the best convergence and enables a
regularized latent space prior distribution, we choose this frame-
work for horizon picking.

Figure 5. The horizon probability map given in equation 12.
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are quite consistent laterally, the structure is complicated by several
faults. The slope-only method generates continuous but incorrect
horizons in Figure 8a; these horizons will be used as the initial hori-

zon estimation, around which waveform samples are extracted and
input to the waveform embedding method for a finer horizon ex-
traction. The multigrid correlation method generates more accurate
horizons across the faults in Figure 8b. Even without explicitly
detecting and estimating fault attributes as in Luo and Hale (2013),
Wu and Hale (2016), Wu et al. (2016), and Xue et al. (2018), this
baseline method still guides the horizon to track correct phases by
correlating the waveforms in coarse grids. Figure 8c shows the hori-
zon extraction results by the proposed waveform embedding
method. Although Figures 2 and 6 already show that the proposed
method can generate more accurate and reliable horizons than the

Figure 6. We extract a path through the maximum probabilities
from the probability map shown in Figure 5 and acquire this horizon
extraction. Compared with Figure 2, the proposed method correctly
tracks the seismic phase along the target horizon without being mis-
led by the lateral distortion. This shows that the waveform embed-
ding method extracts subtle visual features of the waveforms and
outperforms waveform correlation.

Figure 7. The flowchart of the proposed waveform embedding
method.

Figure 8. The application on multiple horizons with randomly posi-
tioned control points using the 2D data set from the Teapot Dome
survey. (a) The slope-only method generates continuous but incor-
rect horizons. (b) The multigrid correlation method generates more
accurate horizons across the faults. (c) The horizon extraction re-
sults by the proposed waveform embedding method.

40 sam
ples

100 samples 10
0 

sa
m

pl
es

Figure 9. A 3D data set cropped from the Netherlands offshore F3
block seismic data. These data have a group of closely aligned par-
allel faults and some other faults. The yellow arrows annotate the
target horizon that we aim to extract using the aforementioned
methods.

WA72 Shi et al.

D
ow

nl
oa

de
d 

05
/1

0/
20

 to
 2

22
.1

95
.7

9.
15

4.
 R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s o
f U

se
 a

t h
ttp

://
lib

ra
ry

.se
g.

or
g/



baseline method, these results show that the waveform embedding
method can also perform equally well as the baseline method in
other situations.

3D applications

Figure 9 shows a 3D data set (420 ½inline& × 400 ½crossline& × 100
½time& samples) cropped from the Netherlands offshore F3 block seis-
mic data. These data have a group of closely aligned parallel faults and
some other faults. The yellow arrows annotate the target horizon that
we aim to extract using the aforementioned methods.
We extract the first horizon result using the slope-only method as

shown in Figure 10a, in which the horizon surface is color coded
with the amplitude values as shown in Figure 9 (the background
seismic images use a grayscale colormap to enhance visualization),
and the green cube in the middle represents the position of the
control point. Although the horizon follows the trend of the slopes,
it fails to correctly track seismic reflections across those faults, a
nd thus results in obvious amplitude variations on the surface
(inconsistent colors). Because the control point is located at an am-
plitude trough, the ideal horizon surface should be colored in red
everywhere, and inconsistent colors indicate incorrect jumps across
seismic reflections.
We use the multigrid correlation method to extract the second

horizon result as shown in Figure 10b. It is easy to notice the im-
provement from the slope-only method: The amplitude is now much
more consistent across the horizon surface. We can also observe
those parallel faults in a staircase shape from the horizon surface.
Finally, Figure 10c shows the horizon extracted by the proposed

waveform embedding method. We can see a further improvement in
terms of amplitude consistency compared with the conventional
method. Except for a few transition regions with large fault throws
and noisy waveforms, the horizon surface is colored in red almost
everywhere as expected from the control point amplitude. Figure 11
shows the corresponding 2D slice view.
Figure 12 presents another more complex 3D data set

(600 ½inline& × 600 ½crossline& × 400 ½time& samples) that contains
larger fault throws and more significant lateral distortions, which is
a challenging task for any automated horizon extraction method.
Figure 13 shows the horizon extraction results using the afore-

mentioned methods from a single control point located on the left
side of the figure. Figure 14 shows the corresponding 2D slice
view. Due to the large fault slip nearby, the slope-only method mis-

tracks the horizon to a shallower layer on the right side of the figure
and also has very inconsistent amplitude values. The multigrid
correlation method, despite being better than the slope-only method
in terms of consistent amplitudes, still tracks the incorrect horizon.

200 sam
ples

200 samples 20
0 

sa
m
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es

Figure 12. Another more complex 3D data set that contains larger
fault throws and more significant lateral distortions, which could be
a challenging task for any automated horizon extraction methods.

Figure 11. A 2D slice view of the horizon results shown in Fig-
ure 10. The slice is selected along the direction perpendicular to
most of the faults (left to right in the 3D view). The slope-only
method (yellow), multigrid correlation method (lime), and proposed
waveform embedding method (cyan).

Figure 10. Comparison of the horizon extraction results. The green cube in the middle represents the position of the control point. The horizon
surface is color coded with the amplitude values to visualize the amplitude consistency. The (a) slope-only method, (b) multigrid correlation
method, and (c) proposed waveform embedding method.
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The proposed method can extract a horizon that is tracking the correct
trend of the horizon by going deeper gradually from left to right.
However, due to lateral waveform distortions, the horizon quality
deteriorates from left to right with more and more inconsistent
layers.
Figure 15 shows similar horizon extraction results in Figure 13,

but with a different control point located in the middle of the figure.
Figure 16 shows the corresponding 2D slice view. The slope-only

method generates a rather flat horizon surface. The multigrid cor-
relation method also fails to deal with the large fault throws and
yields a flat horizon surface that tracks incorrect horizons. The pro-
posed method, with this new control point, performs better than Fig-
ure 13c on the central and right part of the horizon surface and also
tracks the incorrect horizon to the left.
Figure 17 shows the horizon extraction results with both control

points available to these methods. Figure 18 shows the correspond-

Figure 14. The 2D slice view of the horizon results shown in Fig-
ure 13. The slice is selected along the direction perpendicular to
most of the faults (left to right in the 3D view). The slope-only
method (yellow), multigrid correlation method (lime), and proposed
waveform embedding method (cyan).

Figure 13. The horizon extraction results using the aforementioned methods from a single control point located on the left side of the figure. The
green cube in the middle represents the position of the control point. The horizon surface is color coded with the amplitude values to visualize
amplitude consistency. (a) Slope-only method, (b) multigrid correlation method, and (c) the proposed waveform embedding method.

Figure 15. Similar horizon extraction results in Figure 13, but with a different control point located in the middle of the figure. The green cube in
the middle represents the position of the control point. The horizon surface is color coded with the amplitude values to visualize amplitude
consistency. (a) The slope-only method, (b) multigrid correlation method, and (c) proposed waveform embedding method.

Figure 16. The 2D slice view of the horizon results shown in
Figure 15. The slice is selected along the direction perpendicular
to most of the faults (lef to right in the 3D view). The slope-only
method (yellow), multigrid correlation method (lime), and proposed
waveform embedding method (cyan).
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ing 2D slice view. Although the local slope-based method now
captures a correct fault trend, we can still observe inconsistent
amplitude values from the surface colors. The multigrid correlation
method improves significantly and shows a very consistent ampli-
tude surface with blue colors almost everywhere. However, the
proposed method also improves significantly and outperforms
the conventional method in terms of consistent amplitude, accurate
horizon tracking, and much sharper display of all the faults. This
demonstrates that waveform embedding horizon picking method
can handle large fault throws and significant lateral distortions in
real data.
For all the tests involving deep-learning training/inference,

we use a GTX 1080 graphics processing unit (GPU) card to
perform the computations. In the last field example, we set sampling
height to 60 samples and we randomly sample 32-length waveform
traces from this 600 × 600 × 60 region. The inference requires
passing all waveform traces within this search region through
the encoder of the trained network. In total, 600 × 600 ×
ð60 − ð32 − 1ÞÞ ¼ 10;440;000 waveform samples are input to the
network. Including the following dynamic warping process, the
total machine time of this workflow is 21–23 min. Meanwhile, the
multigrid correlation method would take 10–15 min depending on
the tracking parameters. We can see that, with the acceleration of
GPU, the proposed method spends the same order of computational
time compared to the baseline method.

DISCUSSION

Due to the complexity of geology structures in field surveys, there
are still some limitations of the proposed method to practical appli-
cations. First, we assume a limited fault slip; therefore, we could sam-
ple from a relatively narrow zone around the initial slope-based
horizon estimation. However, the larger fault slip will require a wider
sampling region, thus increasing the amount of computations. Be-
sides, the quality of the regularized picking using dynamic warping
could suffer from instability when encountering large jump across the
fault. Moreover, the proposed method could not handle unconform-
ities well because they could either terminate a horizon or signifi-
cantly change the local waveforms on the same horizon, with
both posing challenges to the proposed method based on measuring
waveform similarity.
To solve the aforementioned issues, we consider the following

techniques as future works to improve this method. Introducing un-
certainty estimation of the network prediction can help to improve
the reliability and quality control capability of the results (Gal and
Ghahramani, 2016; Leibig et al., 2017; Feng et al., 2018), thus
allowing some postprocessing to refine the result. Meanwhile, di-
lated convolution (Yu and Koltun, 2015; Strubell et al., 2017) can
significantly increase the receptive size of a network with the same
number of layers compared to regular convolution, thus allowing
the larger input waveform length. Adding more context in the input
extends the capability of this method to complex fault or uncon-
formity structures.

CONCLUSION

We propose waveform embedding, an automatic horizon picking
method based on the deep-learning autoencoder. We implement a
VQ-VAE network to reconstruct seismic waveform samples, while
learning to transform the waveforms to embedded vectors in a latent
space. The regularization of the network ensures that the latent
space assigns similar waveforms to closer embedded vectors in
the latent space, therefore allowing us to use this latent space to
effectively measure the similarity between waveforms. Given one or
more control points, we first estimate an initial horizon using an
efficient least-squares local-slope fitting method, and then extract
waveforms in the nearby region of this initial horizon estimation.
We train the network with these waveforms and compute the
embedded distances to the control point, and then we convert

Figure 17. The horizon extraction results with both control points available to these methods. The green cube in the middle represents the
position of the control point. The horizon surface is color coded with the amplitude values to visualize amplitude consistency. (a) The slope-
only method, (b) multigrid correlation method, and (c) proposed waveform embedding method.

Figure 18. The 2D slice view of the horizon results shown in
Figure 17. The slice is selected along the direction perpendicular
to most of the faults (left to right in the 3D view). The slope-only
method (yellow), multigrid correlation method (lime), and proposed
waveform embedding method (cyan).
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the embedded distances to horizon probabilities. Finally, a horizon
curve (2D) or surface (3D) can be picked from the probability map.
We use 2D/3D real data application examples to demonstrate

the superiority of the proposed method over conventional methods.
Because deep learning automatically extracts important features
into the latent space during training, the proposed method can dis-
cover subtle visual features in the waveforms. Even with large fault
throws and lateral distortions that challenge conventional methods,
the horizons extracted by the proposed method still track correct
seismic reflections with consistent phases.

ACKNOWLEDGMENTS

This research is financially supported by the sponsors of the
Texas Consortium for Computational Seismology. We thank NVI-
DIA GPU Grant Program for donating a Titan Xp GPU for research
computation.

DATA AND MATERIALS AVAILABILITY

Data associated with this research are confidential and cannot be
released.

REFERENCES

Arias, E., 2016, Estimating seismic reflection slopes: Master’s thesis, Colo-
rado School of Mines.

Bakker, P., 2002, Image structure analysis for seismic interpretation: Delft
University of Technology.

Deng, L., M. L. Seltzer, D. Yu, A. Acero, A. Mohamed, and G. Hinton,
2010, Binary coding of speech spectrograms using a deep auto-encoder:
Presented at the 11th Annual Conference of the International Speech
Communication Association.

Di, H., D. Gao, and G. AlRegib, 2018, 3D dip vector-guided auto-tracking
for weak seismic reflections: A new tool for shale reservoir visualization
and interpretation: Interpretation, 6, no. 4, SN47–SN56, doi: 10.1190/
INT-2018-0053.1.

Dumoulin, V., and F. Visin, 2016, A guide to convolution arithmetic for deep
learning: arXiv preprint, arXiv:1603.07285.

Feng, D., L. Rosenbaum, and K. Dietmayer, 2018, Towards safe autono-
mous driving: Capture uncertainty in the deep neural network for lidar
3D vehicle detection: 21st IEEE International Conference on Intelligent
Transportation Systems (ITSC), 3266–3273.

Figueiredo, A., P. Silva, M. Gattass, F. Silva, and R. L. Milidiú, 2014,
A seismic facies analysis approach to map 3D seismic horizons: 84th
Annual International Meeting, SEG, Expanded Abstracts, 1501–1505,
doi: 10.1190/segam2014-1382.1.

Fomel, S., 2002, Applications of plane-wave destruction filters: Geophysics,
67, 1946–1960, doi: 10.1190/1.1527095.

Fomel, S., 2010, Predictive painting of 3D seismic volumes: Geophysics, 75,
no. 4, A25–A30, doi: 10.1190/1.3453847.

Gal, Y., and Z. Ghahramani, 2016, Dropout as a Bayesian approximation:
Representing model uncertainty in deep learning: International
Conference on Machine Learning (ICML), 1050–1059.

Hale, D., 2009, Structure-oriented smoothing and semblance: CWP Report,
635, 261–270.

Hale, D., 2013, Dynamic warping of seismic images: Geophysics, 78, no. 2,
S105–S115, doi: 10.1190/geo2012-0327.1.

He, K., X. Zhang, S. Ren, and J. Sun, 2016, Deep residual learning for image
recognition: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 770–778.

Hoyes, J., and T. Cheret, 2011, A review of global interpretation methods for
automated 3D horizon picking: The Leading Edge, 30, 38–47, doi: 10
.1190/1.3535431.

Kingma, D. P., and M. Welling, 2013, Auto-encoding variational Bayes:
arXiv, abs/1312.6114.

Leibig, C., V. Allken, M. S. Ayhan, P. Berens, and S. Wahl, 2017, Leverag-
ing uncertainty information from deep neural networks for disease detec-
tion: Scientific Reports, 7, 17816, doi: 10.1038/s41598-017-17876-z.

Lomask, J., A. Guitton, S. Fomel, J. Claerbout, and A. A. Valenciano, 2006,
Flattening without picking: Geophysics, 71, no. 4, P13–P20, doi: 10
.1190/1.2210848.

Luo, S., and D. Hale, 2013, Unfaulting and unfolding 3D seismic images:
Geophysics, 78, no. 4, O45–O56, doi: 10.1190/geo2012-0350.1.

Marfurt, K. J., 2006, Robust estimates of 3D reflector dip and azimuth:
Geophysics, 71, no. 4, P29–P40, doi: 10.1190/1.2213049.

Monniron, M., S. Frambati, S. Quillón, Y. Berthoumieu, and M. Donias,
2016, Seismic horizon and pseudo-geological time cube extraction
based on a Riemmanian geodesic search: IEEE 12th Image, Video, and
Multidimensional Signal Processing Workshop (IVMSP), 1–5.

Noh, H., S. Hong, and B. Han, 2015, Learning deconvolution network for
semantic segmentation: Proceedings of the IEEE International Conference
on Computer Vision (ICCV), 1520–1528.

Paszke, A., S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, and L. Antiga, 2019, PyTorch: An imperative
style, high-performance deep learning library: Advances in Neural Infor-
mation Processing Systems (NeurlPS), 8024–8035.

Peters, B., J. Granek, and E. Haber, 2019, Multi-resolution neural networks
for tracking seismic horizons from few training images: Interpretation, 7,
no. 3, SE201–SE213, doi: 10.1190/INT-2018-0225.1.

Qian, F., M. Yin, X.-Y. Liu, Y.-J. Wang, C. Lu, and G.-M. Hu, 2018,
Unsupervised seismic facies analysis via deep convolutional autoen-
coders: Geophysics, 83, no. 3, A39–A43, doi: 10.1190/geo2017-0524.1.

Sakoe, H., S. Chiba, A. Waibel, and K. Lee, 1990, Dynamic programming
algorithm optimization for spoken word recognition: Readings in Speech
Recognition, 159, 224.

Strubell, E., P. Verga, D. Belanger, and A. McCallum, 2017, Fast and ac-
curate entity recognition with iterated dilated convolutions: arXiv pre-
print, arXiv:1702.02098.

Vail, P. R., R. M. Mitchum, and S. Thompson, 1977, Seismic stratigraphy
and global changes of sea level — Part 5: Chronostratigraphic signifi-
cance of seismic reflections, in C. W. Payton, ed., Seismic stratigraphy—
application to hydrocarbon exploration: AAPG Memoir, 26, pp. 99–116.

van den Oord, A., and O. Vinyals, 2017, Neural discrete representation
learning: Advances in Neural Information Processing Systems (NeurIPS),
6306–6315.

Wu, X., 2017, Directional structure-tensor-based coherence to detect seismic
faults and channels: Geophysics, 82, no. 2, A13–A17, doi: 10.1190/
geo2016-0473.1.

Wu, X., and S. Fomel, 2018, Least-squares horizons with local slopes and
multigrid correlations: Geophysics, 83, no. 4, IM29–IM40, doi: 10.1190/
geo2017-0830.1.

Wu, X., and D. Hale, 2013, Extracting horizons and sequence boundaries
from 3D seismic images: 83rd Annual International Meeting, SEG, Ex-
panded Abstracts, 1440–1445, doi: 10.1190/segam2013-0296.1.

Wu, X., and D. Hale, 2015, Horizon volumes with interpreted constraints:
Geophysics, 80, no. 2, IM21–IM33, doi: 10.1190/geo2014-0212.1.

Wu, X., and D. Hale, 2016, Automatically interpreting all faults, unconform-
ities, and horizons from 3D seismic images: Interpretation, 4, no. 2, T227–
T237, doi: 10.1190/INT-2015-0160.1.

Wu, X., and X. Janson, 2017, Directional structure tensors in estimating
seismic structural and stratigraphic orientations: Geophysical Journal
International, 210, 534–548, doi: 10.1093/gji/ggx194.

Wu, X., S. Luo, and D. Hale, 2016, Moving faults while unfaulting 3D seis-
mic images: Geophysics, 81, no. 2, IM25–IM33, doi: 10.1190/geo2015-
0381.1.

Xie, J., R. Girshick, and A. Farhadi, 2016, Unsupervised deep embedding
for clustering analysis: International Conference on Machine Learning
(ICML), 478–487.

Xue, Z., X. Wu, and S. Fomel, 2018, Predictive painting across faults: In-
terpretation, 6, no. 2, T449–T455, doi: 10.1190/INT-2017-0171.1.

Yu, F., and V. Koltun, 2015, Multi-scale context aggregation by dilated con-
volutions: arXiv preprint, arXiv:1511.07122.

Yu, Y., C. Kelley, and I. Mardanova, 2011, Automatic horizon picking in
3D seismic data using optical filters and minimum spanning tree (patent
pending): 81st Annual International Meeting, SEG, Expanded Abstracts,
965–969, doi: 10.1190/1.3628233.

Yu, Y., C. L. Kelley, and I. M. Mardanova, 2012, Seismic horizon autopick-
ing using orientation vector field: U.S. Patent 8,265,876.

Yu, Y., C. Kelley, and I. Mardanova, 2013, Volumetric seismic dip and azi-
muth estimation with 2D log-Gabor filter array: 83rd Annual International
Meeting, SEG, Expanded Abstracts, 1357–1362, doi: 10.1190/segam2013-
0046.1.

Zhao, T., 2017, Machine assisted quantitative seismic interpretation: Ph.D.
thesis, University of Oklahoma.

Zhao, T., V. Jayaram, A. Roy, and K. J. Marfurt, 2015, A comparison of
classification techniques for seismic facies recognition: Interpretation,
3, no. 4, SAE29–SAE58, doi: 10.1190/INT-2015-0044.1.

Zinck, G., M. Donias, J. Daniel, S. Guillon, and O. Lavialle, 2013, Fast
seismic horizon reconstruction based on local dip transformation: Journal
of Applied Geophysics, 96, 11–18, doi: 10.1016/j.jappgeo.2013.06.010.

WA76 Shi et al.

D
ow

nl
oa

de
d 

05
/1

0/
20

 to
 2

22
.1

95
.7

9.
15

4.
 R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s o
f U

se
 a

t h
ttp

://
lib

ra
ry

.se
g.

or
g/


