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Abstract

Salt boundary interpretation is important for the understanding of salt tectonics and velocity model building
for seismic migration. Conventional methods consist of computing salt attributes and extracting salt boundaries.
We have formulated the problem as 3D image segmentation and evaluated an efficient approach based on deep
convolutional neural networks (CNNs) with an encoder-decoder architecture. To train the model, we design a
data generator that extracts randomly positioned subvolumes from large-scale 3D training data set followed by
data augmentation, then feed a large number of subvolumes into the network while using salt/nonsalt binary
labels generated by thresholding the velocity model as ground truth labels. We test the model on validation data
sets and compare the blind test predictions with the ground truth. Our results indicate that our method is
capable of automatically capturing subtle salt features from the 3D seismic image with less or no need for
manual input. We further test the model on a field example to indicate the generalization of this deep CNN
method across different data sets.

Introduction
In seismic interpretation and subsurface modeling,

extracting geologic structures such as faults, uncon-
formities, horizons, and salt bodies from 3D seismic
data are critical. Conventional methods derive seismic
attributes based on geologic, physical, and geometric
principles. Interpreting salt from seismic often involves
visual features including steeply dipping events and
chaotic signals. Specifically, seismic attributes used
for automatically interpreting salt boundaries include
discontinuities (Asjad and Mohamed, 2015), textures
(Wang et al., 2015), reflection dip or normal vector
fields (Haukås et al., 2013), and salt likelihoods (Wu,
2016). Although automatic methods have been pro-
posed for computing salt attributes and extracting salt
boundaries from those attributes (Ramirez et al., 2016;
Wu et al., 2018a), it remains a manual-intensive and
time-consuming task in practice.

These attributes are designed with domain expertise
knowledge and engineering; however, these attributes
may not yet fully describe the complex noise-contami-
nated seismic data in real world (Marfurt and Alves,
2015). The recently developed machine-learning tech-
niques enable computers to perform repetitive tasks,
and unravel the relationships that contain useful patterns
(Zhao, 2017). Ross and Cole (2017) review popular facies
classification methods based on machine-learning algo-

rithms. Deep neural networks (DNNs) are built on the
premise that they can replicate a wide variety of nonlin-
ear operator (universal approximation theorem, Csáji,
2001). Compared with traditional machine-learning algo-
rithms, DNNs have the advantage that they extract useful
features automatically via numerous hidden layers.

Convolutional neural networks (CNNs) are a speciali-
zation of DNNs by replacing matrix multiplications with
convolution operators, to focus on learning the locality
and spatial relationship between input image and output
label. Huang et al. (2017) show that CNNs provide
improved results over traditional methods such as sup-
port vector machines and logistic regression for identi-
fying geologic faults in 3D seismic data. Araya-Polo et al.
(2017) use prestack seismic data to identify faults
directly without migrating the data to migrated images.
Waldeland and Solberg (2017) train a CNN to perform
pixel-by-pixel salt body classification. These experi-
ments show the encouraging accuracy of CNNs in a
variety of seismic processing and interpretation tasks.

To use the power of CNN in automatic salt interpre-
tation, there have been patch-based studies that classify
the seismic image as salt/nonsalt in a patch-by-patch
fashion, and we assign the classification prediction to
the central voxel of that patch. Di et al. (2018a) andWal-
deland and Solberg (2017) propose a CNN architecture
with fully connected layers attached after convolutional
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layers to predict the classification using a softmax
activation layer at the end. Wu et al. (2018b) also use a
similar CNN-based pixel-wise classification method to
predict fault existence and position in each image patch.
However, patch-based methods are born with disadvan-
tages in geobody interpretations because they are origi-
nally designed for object classification problems.
Figure 1a demonstrates how patch-based detectionmeth-
ods work: For each pixel, the network will take a win-
dow, centered at the point of interest, as its input and
classify the category to which this pixel belongs. The
process will repeat by sliding the window across the im-
age until all of the pixels are scanned. The disadvantage
of these methods is twofold: First, a local window or
cube is required to slide through the full data set to make
a prediction at every pixel or voxel; second, it could be
challenging for patch-based classification to delineate the
boundary of geobodies with high resolution, for example,
Figure 1a shows two window inputs with similar content
but should be classified to different categories.

On the other hand, separating salt body from conform-
able seismic reflections is naturally an image segmenta-
tion task. Figure 1b shows an output example of the
segmentation method; in the example, all pixels in the
window input are classified to its category simultane-
ously and output together as a mask. Previous research-
ers (Lomask et al., 2007; Ramirez et al., 2016) discuss salt
boundary extraction as a global image segmentation
problem. Considering geobody interpretation as image
segmentation addresses those disadvantages of patch-
based methods. In computer vision area, image segmen-
tation using deep-learning techniques is a topic being ac-
tively researched with promising progresses (Girshick,
2015; Ronneberger et al., 2015; Xie and Tu, 2015; Badri-
narayanan et al., 2017; He et al., 2017; Ren et al., 2017).
Zhao (2018) and Di et al. (2018b) present encouraging
results using 2D encoder-decoder networks to separate

different seismic facies including salt domes, low coher-
ence, low amplitude dipping, high amplitude deformed,
and compare with the patch-based method. Wang et al.
(2018) show by 2D synthetic examples that it is possible
to perform salt detection, even from prestack seismic
data, via segmentation network. Wu et al. (2019) show
that segmentation network can be highly effective and
efficient for 3D seismic fault interpretations.

Therefore, in this paper, we propose to apply a deep
CNN-based segmentation model to tackle 3D seismic
salt interpretation automatically. We adopt the network
architecture from U-net (Ronneberger et al., 2015) to
build a 3D encoder-decoder network with skip connec-
tions. The network takes a seismic subvolume with cer-
tain size (receptive field) as input, and it outputs a salt
probability subvolume with the same size. To train and
validate the model, we use SEG Advanced Modeling
(SEAM) Phase I synthetic data migrated image (Fehler
and Keliher, 2011) as the input image and we extract a
binary salt mask from the corresponding velocity model
by thresholding and clipping. We split the data volume to
a training part and a validation part; the training part is
used to optimize the network, and the validation part can
be used to test the generalization of the trainedmodel via
a blind test. During the training process, a data generator
randomly crop and rotate a subvolume according to the
size of network’s receptive field. After a sufficient
amount of training, we use the network to find the salt
probability of all parts of the data, and we compare with
the ground truth salt mask via several quantitative met-
rics. Furthermore, the model is applied to a field seismic
data set and outputs a decent salt model prediction.

Network architecture
The first semantic segmentation method using an

encoder-decoder architecture is a fully convolutional
network (Long et al., 2015). The encoder-decoder net-

work consists of the stacking of multiple
convolutional layers like the other CNNs;
however, the difference is that instead of
using a fully connected layer at the out-
put to connect with categorical data, the
encoder-decoder uses a convolutional
layer to retain all spatial information and
connect to multidimensional data. This
allows for image-to-image segmentation
rather than image-to-class classification
in the case of ordinary CNN. Another im-
portant feature of encoder-decoder is the
“bottleneck” architecture: The input data
are gradually downsampled after passing
through the encoder layers, and then
they are upsampled layer-by-layer in the
decoder section, as shown in Figure 2.
The downsampling is achieved by select-
ing fewer pixels from the image feature
according to a certain algorithm, e.g.,
max pooling or average pooling (Bour-
eau et al., 2010), so that less significant

a) b)

Figure 1. (a) Demonstration of the patch-based classification methods: For each
pixel, the network will take a window, centered at the point of interest, as its input
and classify the category to which this pixel belongs. The process will repeat by
sliding the window across the image until all the pixels are scanned. (b) An exam-
ple of the segmentation method. In this example, all pixels in the window input are
classified to a category simultaneously and output together as a mask.
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pixels are discarded and the significant ones are kept
after downsampling. Conversely, the upsampling layers
use the algorithm such as deconvolution (Noh et al.,
2015), sometimes also referred to as transposed convo-
lution (Dumoulin and Visin, 2016), to try to reconstruct
the image feature to its original dimension. Training a
DNN can be seen as looking for a parameterized trans-
formation that transforms the input to the output using
stochastic optimization; in the encoder-decoder net-
work, the compression of dimension in the middle of the
architecture enforces a sparse representation of such a
transform to help to accelerate the training (Papyan et al.,
2018). Due to the loss of information from downsampling
in the encoder, Badrinarayanan et al. (2017) and Ronne-
berger et al. (2015) propose different techniques to alle-
viate this issue by reconnecting these layers from
encoder to their counterparts in the decoder. SegNet
(Badrinarayanan et al., 2017) is first proposed for traffic
scene segmentation; in its decoder, the pooling indices
from the encoder downsampling are reused to perform
upsampling. U-net (Ronneberger et al., 2015) is first pro-
posed for biomedical image segmentation; the architec-
ture copies layers from the encoder and concatenate
to the corresponding layers in the decoder. This type
of connections to reuse of network features from the
encoder is often referred to as “skip connections.”

We adopt the U-net architecture to build a network
for 3D salt segmentation. The convolution, pooling, and
deconvolution are replaced with 3D operators. The re-
ceptive field defines the size of a data subvolume to be
input into the network at once. The size of receptive
field should be as large as possible so that the network
can take global trend into account rather than breaking
down to subvolumes; also, multiple predictions on ad-
jacent subvolumes may result in conflicting predictions

at boundary regions that require careful patching and
merging. However, the size of receptive field is usually
limited by hardware: Without sacrificing network
complexity, a larger receptive field requires a larger
processor memory. We set the receptive field size as
128 × 128 × 128 voxels according to the memory size
of our NVIDIA Titan Xp GPU. The input is a 3D image
with a single channel: The seismic amplitude, therefore,
has a size of 128 × 128 × 128 × 1. It is worth noting that
this network is by no means limited to single-channel
input; it is possible to append more channels, e.g., vari-
ous seismic attributes, to the input to have multichannel
input to improve the network capability. However, the
additional channels may involve other information that
is subject to errors or inaccuracies; in this work, we
only use the seismic amplitude to simplify the analysis.
The first part of the network, encoder, consists of four
groups of convolutional layers, and all convolution
layers have a kernel size of 3 × 3 × 3. These convolution
groups are followed by batch normalization (Ioffe
and Szegedy, 2015), element-wise rectified-linear unit
σðxÞ ¼ maxf0; xg for nonlinearities, and max pooling
to downsample by factor of two. Symmetric to the
encoder, the second part of the network, decoder, up-
samples the convolution groups by factor of two. At the
end of the network, a single-channel convolutional
layer followed by sigmoid activation outputs the binary
probability (0 or 1). Because of the symmetry of the
architecture, the output will have the same size of the
input 128 × 128 × 128 × 1. Compared with the original U-
net architecture in two dimensions, the 3D salt segmen-
tation network includes many more parameters; to train
it with generalizing capability, we also add a few dropout
layers (Hinton et al., 2012) to the network. Figure 2 shows
the illustration of our network architecture.

Figure 2. Illustration of the network architecture. “BN” is the abbreviation for batch normalization. In the second half of the
network, the additional channels from the skip connections are highlighted in dark red. This illustration is not drawn to scale.
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Training the model
To train the model, we select the SEAM Phase I data

set (Fehler and Keliher, 2011) as the training data, as
shown in Figure 3a. The size of the data set is
1169 × 1002 × 751. We split the data in half along the
south–north axis; one half will provide the training data
(0–11.69 km), and the other can be used after training as

validation data (11.69–23.38 km). To acquire a ground
truth salt mask to train the network model, we thresh-
old the velocity model (Figure 3b) in the range of 4.3–
4.4 km/s to generate a salt mask. According to the salt
mask, we assign binary values to different regions to
make a label volume: 0 represents the nonsalt region,
and 1 represents the salt body. Figure 3c shows the salt

mask as the training label, in which the
cyan region represents the salt body and
the other nonsalt region is rendered as
transparent to show the seismic image
background. Figure 3d shows a 3Dmesh
surface visualization of the ground truth
salt model. In Figure 3, we can see that
there are two major salt bodies in the
volume: one in the shallow depth and
another in a deeper depth.

Training data
Because the network receptive field

has a size of 128 × 128 × 128, we ran-
domly crop subvolumes with the same
size from the training side of the data
set volume. The training labels are also
subvolumes cropped from the label vol-
ume at the corresponding locations. The
position of training label must match the
training image. All input images are nor-
malized to have zero-mean and unit-vari-
ance distribution to ensure numerical
stability in the training. Those training
pairs are grouped to batches and input
to the network. A larger batch size can
result in a smooth and stable learning
process; however, due to the size of our
network, the batch size is often limited
by the hardware memory. For example,
the graphics processing unit (GPU) that
we use (NVIDIA Titan Xp) has 12 GB

graphic memory for the training, which would limit the
maximum batch size to two; larger hardware memory
could allow for more training samples in the batch.

Data augmentation
We use several data augmentations to improve the

generalization of the model as shown in Figure 4. First,
the cropping positions are all randomly selected within
the volume. Furthermore, the cropping position is not
limited to the inline-crossline direction; the horizontal
window could be rotated randomly. Then, the two hori-
zontal axes of the cropping window can be randomly
transposed or reflected on any axis to create a different
variety of subvolume. However, the z-axis (the depth
axis) will not be transposed because of the vertical
heterogeneity of seismic data. So effectively, the trans-
formation is performed in x-y 2D space and then repli-
cated on all z-axis slices. These transformations are all
valid based on the assumption that the salt features in
the seismic image are independent to the seismic datum

Figure 3. (a) SEAM Phase I data set as 3D training data. (b) The corresponding
velocity model, from which we threshold the velocity value and extract the salt
mask in (c). (c) Salt mask in cyan that is used as the ground truth training label.
(d) The 3D mesh surface visualization of the ground truth salt model; these sur-
faces can represent the salt top and base boundaries.

Figure 4. The illustration of the data augmentation workflow
to improve the training data variety by applying random crop-
ping and random transformations.
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footprint. In fact, these data augmentation techniques
are able to generate infinite subvolumes from a given
seismic data volume.

At the beginning of training, all of the model param-
eters (the filters in the convolutional layers) are ran-
domly initialized by the distribution described by He
et al. (2015). We use the binary cross-entropy loss as the
objective function and the adaptive momentum descent
(Adam) as the optimization algorithm (Kingma and Ba,
2014) to iteratively update the model weights. We train
the model for 100 epochs, where we define each epoch
as 50 batches of randomly generated training samples
and each batch contains two samples, so that the model
is effectively trained with 10,000 random training sam-
ples cropped from the training data set. The training
takes 17–19 h, with various setups, on a single NVIDIA
Titan Xp GPU. Note that this is a one-time cost and can
vary with the amount of training samples used in this
process. At the end of training, the average pixel-wise
accuracy reaches 98.2%.

Model prediction
Because the network’s receptive field size is smaller

than the size of most data set volumes, we must predict
the salt probability separately for multiple subvolumes
and merge all the patches to the full volume dimension.
For a local window with size nx × ny × nz, we move the
local window with step ðnx − kx; ny − ky; nz − kzÞ in
which kx < nx, ky < ny, and kz < nz are the size of the
overlapping between two adjacent windows on each di-
mension, respectively. After the salt body probability
Pðx; y; zÞ at location ðx; y; zÞ is output by the model,
we apply a decaying-boundary mask Mðx; y; z; kx;
ky; kzÞ that has unit value at the central region and Gaus-
sian-decaying boundaries on each dimension with
kx; ky; kz as the decay radii. Thus, we can merge all
the weighted predictions by this weighted summation:

Pfull ¼
P

x;y;zPðx; y; zÞ · Mðx; y; z; kx; ky; kzÞ
P

x;y;z
Mðx; y; z; kx; ky; kzÞ

: (1)

We can see from the following results that, with the
above merging method, the boundary effect due to
patch prediction is reduced to minimal.

Test on validation data
We test the trained model on the full SEAM data set

volume including the training and validation data sets to
check if the model could generalize to the validation
side or if it only overfits upon the training side. To keep
consistent with the training stage, the zero-mean unit-
variance normalization within each window is also ap-
plied in the test; however, the random transformations
are all turned off.

Figure 5a shows the salt probability volume predicted
by the trained model overlaid on the seismic image. The
color in the image represents the salt probability values,
in which the red stands for high salt probability and

the blue represents lower probability. The probability
image is also clipped at 0.1, so that any voxel with salt
probability <0.1would be transparent, showing the back-
ground seismic image. Figure 5b shows a 3D mesh sur-
face visualization of the predicted salt model. The cyan
surfaces represent the 3D contour in which the salt prob-
ability equals 0.5, so that these surfaces can represent the
salt boundaries. Although the model is trained with half
of the data set, it works pretty well to provide an accu-
rate prediction of the salt positions. By comparing the
network prediction in Figure 5 with the ground truth
in Figure 3, we can observe that the network captures
all major features of both salt bodies and the salt prob-
ability image matches with the ground truth model with
a very sharp boundary. A few false detections scatter
around the volume mostly due to the stochastic noise
in the seismic image, e.g., the small false positive bodies
on the bottom right and a false negative salt boundary on
the very left of the volume. However, carefully investigat-
ing Figure 5a can show that these false detections have
lower possibilities (relatively in blue) than the correct

Figure 5. (a) The network prediction output on the full vol-
ume of SEAM data. The salt probability volume is displayed
over the seismic image background. Color in the image repre-
sents the salt probability values, in which the red stands for
high salt probability and the blue represents lower salt proba-
bility. The probability image is also clipped at 0.1 so that any
voxel with salt probability <0.1 would be transparent, showing
the background seismic image. (b) Similar to Figure 3d, shows
a 3D mesh surface visualization of the predicted salt model.
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detections (mostly in red), which means that we could
use a higher threshold to filter out these false detections.
Even though the network prediction is a bit more rough-
ened at highly dipped flanks and has small scattered
noisy false positives, it is possible to remove these inac-
curacies with postprocessing; on the other hand, the top
and base boundaries are captured fairly accurately.

Figures 6 and 7 show four south–north line and
west–east line sectional comparisons between the pre-
diction result and ground truth overlaid on the seismic
image background. These regions are selected to dem-
onstrate different parts of the salt body. In these figures,
the dashed red curve represents the network prediction
result and the solid yellow curve represents the ground
truth. In Figure 6, the dashed white line indicates the
location where we split the training and validation data:
The left side provides data to train the network,
whereas the right side is only used in the validation test.
Figure 6a shows a good match between the prediction
and the truth. Figure 6b shows that the network model
does not blindly follow the reflection energy boundary;
instead, it extends out to match the salt body model as

indicated by the arrow. In Figure 6c, there is a thin en-
closing area missed by the network, some discrepancies
at the salt base, and a few false positives underneath the
salt base. In Figure 6d, this enclosing area is captured by
the network; however, we can observe an extending
false positive as indicated by the arrow. This may be due
to the blurry flank coinciding with strong migration ar-
tifacts to the left. Figure 7a and 7b is located on the train-
ing side, and Figure 7c and 7d is located on the testing
side. Figure 7a shows a good matching on the east–west
line. Figure 7b shows an overall good matching, includ-
ing the thin enclosing area, with a few scattering false
detections. Figure 7c also shows a decent matching on
the salt top and base surfaces. It is very interesting in
Figure 7d that in spite of the very blurry seismic reflec-
tion and strong noise at the right flank and underneath
the salt base, the network model still captures the salt
boundary fairly close to the true model. Overall, with
some scattering false detections at certain noisy areas,
the network prediction matches the ground truth accu-
rate and is robust enough to show the salt top and base
surfaces, sometimes even small enclosings. In general,

a) b)

c) d)

Figure 6. Four north–south line sectional comparisons between prediction and ground truth overlaid on the seismic image back-
ground. In these figures, the dashed red curve represents the network prediction result, and the solid yellow curve represents the
ground truth. The dashed white line indicates the location where we split the training and validation data: The left side provides
data to train the network, whereas the right side is only used in validation tests. These regions are selected to demonstrate different
parts of the salt body.
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the network performs better on prediction of the top
than of the base; however, the sectional views show that
the differences are not significant.

We computed some quantitative metrics on the val-
idation part of the data set to verify the generalization
performance of the network. These metric scores can
demonstrate not only the pixel accuracy of the predic-
tion but also the distribution of true positive, true neg-
ative, false positive, and false negative of the network
prediction. Table 1 shows these metrics, the scores, and
their definitions. In the definition, TP; TN; FP , and FN
represent the fraction of the true positive, true negative,
false positive, and false negative predictions against the
ground truth, respectively. These scores are all com-
puted based on a 0.5 thresholding, which means that
any voxel with salt probability >0.5 would be classified
as salt, otherwise as nonsalt.

Admittedly, although the scores in Table 1 show de-
cent performance on the validation test, salt detection
in production has a very high demand for accuracy due
to its impact on seismic imaging. Therefore, the model
may not suffice as a final result but should serve as an
initial reference for further interpretation.

Test on field example
We perform another test on the field data set, Nether-

lands off-shore F3 block seismic data, graciously pro-
vided by the Dutch government through TNO and
dGB Earth Sciences. A subset of the full volume with
size 651 × 700 × 240 is cropped out to remove the un-
covered border regions with incomplete traces and to
contain three major salt bodies that appear at a deeper
depth of the data set, as shown in Figure 8.

Figure 9 shows the salt probability volume and the
3D mesh surface visualization of the predicted salt
model on the F3 data set. Unlike the previous synthetic
example, these field data tend to be noisier and less

a) b)

c) d)

Figure 7. Four east–west line sectional comparisons between prediction and ground truth overlaid on the seismic image back-
ground. In these figures, the dashed red curve represents the network prediction result and the solid yellow curve represents the
ground truth. (a and b) are located on the training side, and (c and d) are located on the testing side. These regions are selected to
demonstrate different parts of the salt body.

Table 1. Validation metric scores.

Accuracy 0.9609 ðTP þ TNÞ∕ðTP þ TN þ FP þ FNÞ
Precision 0.9004 TP∕ðTP þ FPÞ
Recall 0.9468 TP∕ðTP þ FNÞ
F1 score 0.9230 ð2 × Precision × RecallÞ∕ðPrecisionþ RecallÞ
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apparent at salt boundaries. However, the result shows
that all of the salt bodies appear in the prediction with
noisy salt boundaries. The probability image in Figure 9a
shows a rather gentle transition from low to high salt
probability at the salt boundaries. It could be explained
that the network is not trained with sufficient samples
with noisy and ambiguous salt boundaries. In the center
area of the figure, we can observe a strong false positive
that incorrectly highlights a channel-like feature as a salt
body; this implies that binary classification in complex
field data is not enough and multifacies segmentation
is a possible solution to such issue. Overall, the general
structure of all of these salt bodies is still captured fairly
well despite the limitations of the training. In addition,
we calculate a postprocessing attribute based on the salt
probability prediction via the salt indicator attribute de-
scribed by Wu (2016) as shown in Figure 10. This post-
processing removes most of the scattered noisy low-
probability salt bodies from the result and snaps the salt
boundaries to the nearby seismic reflection interfaces so
that they appear more smooth and continuous, so that
the salt model could be enhanced.

In summary, the results show that the deep CNNmodel
generalizes well in either synthetic or field data sets in
terms of capturing subtle salt features from the seismic
image. The implementation could also be very efficient
with hardware acceleration on a GPU. By using one NVI-
DIA Titan Xp, computing the salt prediction via proposed
model on a 10003 volume would take less than 10 min.

Conclusion
We propose a method for end-to-end automatic salt

body detection in a seismic image based on a deep CNN
model. The encoder-decoder architecture with skip

Figure 8. Netherlands off-shore F3 block seismic data. This
data set is used to test the model generalization on the field
survey. The three yellow arrows highlight the major salt bodies
in this region.

a)

b)

Figure 9. (a) The network prediction output on the Nether-
lands F3 data. The salt probability volume is displayed over the
seismic image background. Note that in the center area, we can
observe a strong false positive that incorrectly highlights a
channel-like feature as salt body. (b) A 3D mesh surface visu-
alization of the predicted salt model. Despite the limitation of
training, the general structures of all the salt bodies are cor-
rectly highlighted.

Figure 10. An enhanced view of the salt prediction via cal-
culating a postprocessing attribute, salt indicator, described in
Wu (2016). This postprocessing removes most of the scattered
noisy low-probable salt bodies and snaps the salt boundaries
to the nearby seismic reflection interfaces so that they appear
more smooth and continuous.
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connections allows for extracting essential information
from training data, thus resulting in high accuracy and
great generalization across different types of data sets.
The network can take a 3D single-channel seismic am-
plitude image as input and output a salt body probabil-
ity volume by analyzing the visual features learned from
the training samples. However, the model can take
multichannel input with multiple seismic attributes as
additional information. We design a general method to
randomly generate training samples according to the re-
ceptive field size with several data augmentation meth-
ods, and we train the proposed network with effectively
10,000 random subvolumes. The prediction results
show that the trained model can not only generalize to
the synthetic validation data set, and the field data set
with noisy salt boundaries as well, thus demonstrating
the future potential of this efficient and effective tool
for automatic geobody interpretations.
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