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ABSTRACT

Reservoir characterization involves integration of differ-
ent types of data to understand the subsurface rock proper-
ties. To incorporate multiple well log types into reservoir
studies, estimating missing logs is an essential step. We have
developed a method to estimate missing well logs by using a
bidirectional convolutional long short-term memory (bidi-
rectional ConvLSTM) cascaded with fully connected neural
networks. We train the model on 177 wells from mature
areas of the UK continental shelf (UKCS). We test the
trained model on one blind well from UKCS, three wells
from the Volve field in the Norwegian continental shelf,
one well from the Penobscot field in the Scotian shelf off-
shore Canada, and one well from the Teapot Dome data set
in Wyoming. The method takes into account the depth trend
and the local shape of logs by using ConvLSTM architec-
ture. The method is examined on sonic log prediction and
can produce an accurate prediction of sonic logs from
gamma-ray, density, and neutron porosity logs. The advan-
tages of our method are that it is not applied on an interval by
interval basis like rock-physics-based methods and it also
outputs the uncertainties facilitated by dropout layers and
Monte Carlo sampling at inference time.

INTRODUCTION

The integration of multiple geophysical well logs with seismic
data can greatly reduce the ambiguity of geologic interpretation
and help to construct a better hydrocarbon reservoir model. However,
some types of logs might be missing at some wells in an area of in-
terest because of cost limitations or borehole problems. For example,

seismic-well tie requires sonic and density logs (White and Simm,
2003; Herrera et al., 2014; Muñoz and Hale, 2015; Wu and Caumon,
2017), but either log sometimes can be missing, so they have to be
estimated from other available log types (Bader et al., 2019).
Several statistical and empirical models have been used to esti-

mate missing well logs. Gardner’s equation provides a reasonable
relationship between sonic and density for brine-saturated rock
types (Gardner et al., 1974). The Faust (1953) and Smith (2007)
methods can provide interval relationships between resistivity
and sonic logs. Castagna et al. (1985) and Greenberg and Castagna
(1992) propose empirical relationships to calculate shear wave (S-
wave) velocity from compressional wave (P-wave) velocity. There
are many other rock physics models depending on the reservoir for
conventional and unconventional settings. These models can pro-
duce useful log predictions; however, they are interval-based, de-
pendent on rock types, and their calibration requires human time
and expertise.
An alternative data-driven method is to use nearby training wells

with a complete suite of logs to predict missing logs at a specific
well. This task is particularly suitable for artificial neural networks.
Saggaf and Nebrija (2003) use regularized back-propagation neural
networks to estimate missing sonic from gamma-ray, neutron poros-
ity, and density logs. Rolon et al. (2009) and Salehi et al. (2017) use
fully connected neural networks (FCNNs) for predicting nonre-
corded logs from existing logs. However, FCNNs only produce
a point-to-point mapping from input logs to output logs. Rock prop-
erties often demonstrate a trend with depths, which is important for
geologic studies. Recurrent neural networks (RNNs) consider inter-
nal input from previous step (e.g., trend) and external inputs (other
available log types). Zhang et al. (2018) use RNNs to generate syn-
thetic well logs; however, the model does not take into account the
local shaping information of logs and the uncertainty of the predict-
ing model is not quantified.
We propose a method to estimate missing logs by using a bi-

directional convolutional long short-term memory (ConvLSTM)
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cascaded with FCNNs. The ConvLSTM improves the missing log
predictions by incorporating the local shape of logs related to differ-
ent geologic units. We further add dropout layers to quantify the
uncertainty of the model. The output from our method is a Monte
Carlo simulation of the predicted log, whose variance is the uncer-
tainty of the model. We apply our method for predicting missing
sonic logs from gamma-ray, density, and neutron porosity logs.
We test our approach on six blind wells from different geologic
areas and compare the results against the actual sonic logs and
Gardner’s estimations (Gardner et al., 1974). Gardner’s estimations
are obtained by dividing the wells into different lithologies based on
changes in gamma-ray and density logs and then applying different
parameters based on rock types.

METHOD

Convolutional LSTM architecture

RNN is an internal self-looped deep-learning architecture used
for natural language processing with sequential data. The output
of an RNN at each time step is affected by the input of the current
step and the input from previous steps (Figure 1a). Let x be the input
sequence and y be the output sequence with length T. The terms xhti

and yhti are the samples at time t of input and output sequence, re-
spectively, ahti is the activation output of the network. The forward
propagation of an RNN is

ahti ¼ gðWaaaht−1i þWaxxhti þ baÞ;
yhti ¼ gðWyaahti þ byÞ; (1)

Figure 1. The architecture of (a) RNN and (b) BRNN.

Figure 2. A 1D ConvLSTM. Each shifted log sequence is demon-
strated by the colorbar on the left. Red boxes are 1D convolutional
filters.

Figure 3. Our proposed model. The terms o1, o2, and o3 are BRNN
outputs. The terms s1, s2, and s3 are ConvLSTM cells. The terms
o4, o5, and o6 are FCNN outputs. The term o is the final output. The
term x is the input, and y is the true output.

Figure 5. Validation MSE.

Figure 4. Training MSE.
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whereWaa,Wax,Wya, ba, and by are trainable parameters, and g is
an activation such as the hyperbolic tangent, rectified linear unit
(ReLU), or leaky ReLU function. Bidirectional RNNs (BRNNs)
are an acyclic graph with recurrent layers going forward and back-
ward in time (Figure 1b), which use inputs from both earlier steps
and later steps in the sequence (Schuster and Paliwal, 1997). The
output of the network at each time step is calculated by activation
outputs ←a<t> and ~a<t>

←ahti ¼ gð←Waa←aht−1i þ←Waxxhti þ←baÞ;
→ ahti ¼ gð→ Waa→ ahtþ1i þ→ Waxxhti þ→ baÞ;

yhti ¼ gð←Wya←ahti þ→ Wya→ ahti þ byÞ: (2)

The LSTM is a type of RNN that captures very long-term
dependencies (Hochreiter and Schmidhuber, 1997) and is suitable
for working with long and densely sampled well logs. The activa-
tion outputs are affected by different gates that decide whether to
remove or add information to the cell states. A
candidate value of memory cell state at each time
step is computed from the activation output of the
previous time step and external input at the cur-
rent time step

~chti ¼ gðWcaaht−1i þWcxxhti þ bcÞ: (3)

The update and forget gate decide whether to
update the cell state with the candidate

Γu ¼ σðWuaaht−1i þWuxxhti þ buÞ;
Γf ¼ σðWfaaht−1i þWfxxhti þ bfÞ;
chti ¼ Γu ~chti þ Γfcht−1i; (4)

where σ is the sigmoid function. The activation
output at a time step is calculated using the out-
put gate Γo

Γo ¼ σðWoaaht−1i þWoxxhti þ boÞ;
ahti ¼ ΓogðchtiÞ: (5)

We use leaky ReLU (Xu et al., 2018) as acti-
vation function g in our experiment.
To consider the local shape of logs, which is

related to the depositional facies (Cant, 1994),
we represent each temporal point by a shape de-
scriptor to encode local shaping information
around a point and apply ConvLSTM to capture
the spatiotemporal correlations (Shi et al., 2015;
Zhao and Itti, 2018). The ConvLSTM replaces
the dot product in the state-to-state and input-
to-state transitions with a convolution operator
(�) and calculates the future state of a certain cell
in a spatial grid by the inputs and past states of its
local neighbors

Figure 6. Validation 1 − R2.

Figure 7. Validation well gamma-ray log, density log, neutron porosity log, and sonic
log (a) after being despiked and (b) before being despiked.
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~chti ¼ gðWca � aht−1i þWcx � xhti þ bcÞ;
Γu ¼ σðWua � aht−1i þWux � xhti þ buÞ;
Γf ¼ σðWfa � aht−1i þWfx � xhti þ bfÞ;
Γo ¼ σðWoa � aht−1i þWox � xhti þ boÞ: (6)

The shape descriptor is a 2D window centered at the log, which
also consists of sequences shifted forward and backward. The back-
ward-shifted sequences provide the previous “states” of each log
sample in depth. However, the forward-shifted sequences provide
the latter “states” of each log sample in depth. The original dimen-
sion of 1D input data is ða1; a2; a3Þ, where a1 is the number of input
sequences, a2 is the length of input sequences, and a3 is the number
of log types in the input. For our method, the dimension of the shape

descriptor is ða1; a4; a2; a3Þ, where a4 is the number of shifted se-
quences in the 2D window including the original sequence. In par-
ticular, the data of our experiment are 1D gamma-ray, density, and
neutron porosity logs. Each log sequence has 61 samples, which is
determined by the length of the shortest well in the training area. We
decide to choose the length of the input sequence based on the
shortest well length so that the samples from different wells are
not mixed together. We have a total of 26,062 sequences extracted
from 177 training wells. Three types of input logs are stacked along
the last dimension to create a data set with size (26,062, 60, and 3).
We start from sample 10 and continue until the tenth sample from
the end and extract local windows of 21 samples, which are centered
at each sample of the sequence. We do not need to worry about
padding the boundaries. The size of each local window is now
chosen by trial and error with a constraint of a Titan Xp GPU com-

Figure 8. (a) Validation well: gamma-ray log, density log, neutron porosity log, predicted sonic log (red), true sonic log (black), Gardner’s
estimation (green), and bidirectional LSTM output (light blue). (b) Monte Carlo simulation at three different depths in the training well:
2264.5 m (top row-left), 2888 m (top row-right), and 2956.4 m (bottom row-center). The vertical axes are the probability density functions.
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putational resource. Because the temporal relationship between
shifted sequences captured by the LSTM architecture is the geo-
logic trend, the window size should be large enough but not too
large to avoid vanishing and exploding gradients. The data set
has a new dimension of (26,062, 21, 40, and 3). A convolutional
filter is slid across the entire length of the original log to capture the
local shape (Figure 2). The weight and bias of the convolutional
filter are shared between different shifted sequences of a log type.
Our proposed deep-learning architecture has a BRNN, with three

forward and three backward ConvLSTM blocks, which is cascaded
with four layers of an FCNN (Figure 3). The forward block uses the
previous local information at ht − 1i of a log captured by a convolu-
tional filter and the shifted log to predict the current information at
hti. However, the backward block uses the latter local information at
htþ 1i of a log captured by a convolutional filter and the shifted log
to predict the current information at hti. The blocks in the BRNN
have 16, 32, and 64 neurons, respectively. The BRNN produces 64
feature maps in each forward and backward direction, which con-
tain spatiotemporal information. We concatenate them together to
obtain 128 feature maps; each feature map is a 1D sequence. They
are fed into four layers of an FCNN with 1024, 512, 256, and 1
neuron, respectively.
We want to extract more features from the FCNN layers to help

the network in learning, but it also can make the network easily
overfitting. To control overfitting, we add a variational recurrent

dropout (Gal and Ghahramani, 2015b) for output a in equation 5
after each ConvLSTM cell in the BRNN, which retains a random
50% of the neurons. The same dropout mask is repeated at each
shifted version of the logs, which force the model not to rely on
single shifted versions of the logs and capture the geologic trend
better. This dropout technique has been applied successfully on
RNN without drowning the signal (Gal and Ghahramani, 2015b).
We further add two dropout layers (Srivastava et al., 2014; Gal and
Ghahramani, 2016; Pham et al., 2019) keeping 50% of the neurons
randomly, between the 1024-neuron, 512-neuron, and 256-neuron
FCNN layer, to control overfitting and quantify the model uncer-
tainty. The dropout layer imposes a Bernoulli distribution more than
the filter weights, and it is used to model the weights probabilisti-
cally, which will be discussed below. We believe that the blocks in
BRNN are important in capturing geologic trends and extracting the
local shape of the logs, so they may not be appropriate to model
probabilistically. Therefore, we turn off the variational recurrent
dropout at the test time and only keep the dropout at deeper layers.
We use Adam optimization (Kingma and Ba, 2015) with a learning
rate of 0.0001 to minimize the mean squared error (MSE) between
the predicted log and the target log.
To prevent the network from exploding and vanishing gradients

because of stacking ConvLSTM cells, we normalize the update gate
Γu, forget gate Γf, output gate Γo, and new cell value chti in equa-
tion 4 using layer normalization (Ba et al., 2016) so that the output
when calculating gates is not trapped in the saturated area of the
sigmoid function. We also use an orthogonal matrix to initialize
the weights of BRNN so that the eigenvalues of the weight matrix
neither exploded nor vanished, and the gradients can back-propa-
gate more effectively (Vorontsov et al., 2017).

Model uncertainty

To understand the uncertainty of neural networks, we can ex-
press the training and prediction phase of deep learning using
Bayes’ rule (Ghahramani, 2015). Learning from data is the trans-
formation of the prior probability distributions defined before
observing the data into the posterior distribution defined after
observing the data

Figure 10. Different intervals of interest in the validation well: true
sonic log (black), bidirectional ConvLSTM output (red), bidirec-
tional LSTM output (light blue), and unidirectional ConvLSTM
output (purple).

Figure 9. Validation well crossplots. (a) The real sonic log against
the predicted sonic log. (b) The real sonic log against Gardner’s
estimation.
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PðθjD;mÞ ¼ PðDjθ; mÞPðθjmÞ
PðDjmÞ ; (7)

where θ is the model parameters, D is the training data, and m is the
model. The prediction process also can be expressed by Bayes’ rule:

PðxjD;mÞ ¼
Z

Pðxjθ; D;mÞPðθjD;mÞdθ; (8)

where x is a new input. Therefore, the uncertainty of neural networks
can come from uncertainty of the model parameters, data, and model
structure. We use a dropout layer at test time to calculate the uncer-

tainty from the model parameters for our missing well-log prediction
problem.
If we have training inputs x1; : : : ; xN and corresponding outputs

y1; : : : ; yN , the neural network is trying to estimate a function
y ¼ fðxÞ. Given new input x�, we have an expression for Bayes’
rule (Gal and Ghahramani, 2015a):

Pðy�jx�;X;YÞ ¼
Z

Pðy�jf�ÞPðf�jx�;X;YÞdf�: (9)

We can approximate the integral by conditioning the neural net-
work on a finite set of random variables ω. Function f is defined
through the weights of the neural network, so we can have
ω ¼ ðWiÞLi¼1, where L is the number of layers in the network

Figure 11. (a) Testing well 1: gamma-ray log, density log, neutron porosity log, predicted sonic log (red), true sonic log (black), Gardner’s
estimation (green), and bidirectional LSTM output (light blue). (b) Monte Carlo simulation at three different depths in testing well 1: 2590 m
(top row–left), 3877 m (top row–right), and 4387 m (bottom row–center). The vertical axes are the probability density functions.
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Pðy�jx�;X;YÞ ¼
Z

Pðy�jf�ÞPðf�jx�;ωÞPðωjX;YÞdf�dω:
(10)

We approximate PðωjX;YÞ by a variational distribution QðωÞ
with a condition that the Kullback-Leibler divergence (Kullback,
1959) between two distributions is minimized

Qðy�jx�Þ ¼
Z

Pðy�jf�ÞPðf�jx�;ωÞQðωÞdf�dω: (11)

We can define QðWiÞ for every layer i as

Wi ¼ Mi · diagð½zi;j�Ki
j¼1Þzi;j ∼ BernoulliðPiÞ

for i ¼ 1; : : : ; L; j ¼ 1; : : : ; Ki−1; (12)

where Ki is the number of neurons in layer i, zi;j are Bernoulli
distributed random variables with probabilities Pi, andMi are varia-
tional parameters to be optimized.
Sampling from this QðWiÞ is identical to performing dropout on

layer i in a network with ðMiÞLi¼1 as weights. The dropout layer
randomly removes units within the network with a predefined prob-
ability. Gal and Ghahramani (2015a) prove that minimizing the

Figure 12. (a) Testing well 2: gamma-ray log, density log, neutron porosity log, predicted sonic log (red), true sonic log (black), Gardner’s
estimation (green), and bidirectional LSTM output (light blue). (b) Monte Carlo simulation at three different depths in testing well 2: 2580 m
(top row-left), 3481 m (top row-right), and 3697 m (bottom row-center). The vertical axes are probability density functions.
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Figure 13. (a) Testing well 3: gamma-ray log, density log, neutron porosity log, predicted sonic log (red), true sonic log (black), Gardner’s
estimation (green), and bidirectional LSTM output (light blue). (b) Monte Carlo simulation at three different depths in testing well 3: 2627.8 m
(top row-left), 3266.8 m (top row-right), and 3500 m (bottom row-center). The vertical axes are the probability density functions.

Figure 14. Crossplots of three wells in the area of
interest below the shale layer of the Volve field.
(a) Between the density logs and the predicted
sonic logs. (b) Between the density logs and the
actual sonic logs.
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objective function in a neural network such as the MSE used in our
experiment is the same as minimizing the Kullback-Leibler diver-
gence mentioned above. Therefore, we can approximate the integral
in equation 9 with Monte Carlo integration

Pðy�jx�;X;YÞ ≈ Pðy�jx�;ωÞQðωÞdω ≈
1

T

XT
t¼1

Pðy�jx�; ω̂tÞ;

(13)

where ω̂t ∼QðωÞ.
In short, we can perform the dropout at test time to generate a

distribution of the output well log and take the mean for the pre-
diction and the variance for model uncertainty. This is equivalent

to taking the 95% quantile as an upper bound and 5% quantile
as a lower bound. It is better to model the weights of deeper layers
in a probabilistic way, so we only use the dropout layers at the
FCNN layers at test time. The dropout rate could be optimized,
but we fix it as 30% at test time. Also, instead of having a fixed
dropout rate, we can generate the distribution of the prediction out-
put by using a range of dropout rates from 10% to 50%.

TRAINING

Training data

The training data consist of 177 wells from mature areas of the
UK continental shelf (UKCS) with a full suite of gamma-ray, den-

Figure 15. (a) Testing well 4: gamma-ray log, density log, predicted sonic log (red), true sonic log (black), Gardner’s estimation (green), and
bidirectional LSTM output (light blue). (b) Monte Carlo simulation at three different depths in testing well 4: 1591.1 m (top row-left), 2048.3 m
(top row-right), and 1530.1 m (bottom row-center). The vertical axes are the probability density functions.
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sity, neutron porosity, and sonic logs. The sonic log is related to clay
volume, density, and porosity, so we want to use these three log
types to predict the missing sonic log. We conduct an experiment
while having only gamma-ray and density as input logs, but the
behavior of these logs is opposite (density decreases and P-wave
velocity increases when the clay volume increases), making the net-
work more difficult to identify, especially the local log shape such
as in the validation well. Therefore, we believe that more input log
types would increase the performance of the network. The adding of
neutron porosity log guides the prediction of fluctuation trend better
than having only two types of log with opposite trend.
We first find the shortest length of all of the training wells and take

the samples from the beginning of each well until the largest multiple
of “shortest length” to create sequences such that samples from differ-
ent wells do not mix together in each sequence in a batch. The short-
est training well length has 671 samples, so we choose a sequence
length as 61 samples. We preprocess the data by removing the
median and scaling according fo the quantile range, which is robust
to the outliers and removes the effects of erroneous spikes in the train-
ing data. The samples from the gamma-ray logs are concatenated
with those from the density logs and neutron porosity log. We create
2Dmaps centered at each log sequence in a batch, with 21 sequences.
A 21-sample convolutional filter captures the local shape of a log.
We randomly split the data into 90% for training and 10% for

validation. Using this validation data set, we also can tune the
hyperparameters of the network such as number of layers, number
of output feature maps. The metric we use on validation data set, to
decide whether our network is performing well and when to have
early stopping to control overfitting (Caruana et al., 2000), is MSE
and 1 − R2 values

MSE¼ 1

N

XN
i¼1

ðyi − ŷiÞ2; 1−R2 ¼
P

N
i¼1ðyi − ŷiÞ2P
N
i¼1ðyi− ȳÞ2 ; (14)

where N is the number of samples, yi is the predicted sonic log from
the model, ŷi is the true sonic log, and ȳ is the mean of true sonic

log. The term 1 − R2 is a scaled version of the MSE, so the metric is
fair despite the data range difference. The training will stop if the
MSE and 1 − R2 of the validation data set do not decrease in 20
consecutive epochs.
The batch size is 100 sequences. We train the model with a Titan

Xp GPU, and the training stops at epoch 113 after 4 h. The training
MSE decreases with increasing epochs, and the best training MSE
is 0.059 (Figure 4). The validation MSE and validation 1 − R2

increase for 20 epochs after epoch 93 (Figures 5 and 6). The best
validation MSE is 0.04, and the best validation R2 is 0.75. During
validation, we turn off the variational recurrent dropout so the
validation cost is smaller than the training cost.
The training gamma-ray, density, neutron porosity, and sonic logs

are despiked using median filtering of the rolling window, before
feeding into the deep-learning model (Figure 7). The preprocessing
steps make the training process fast. When comparing the results,
we also compare with the despiked version of true sonic logs be-
cause the spikes in the logs sometimes are caused by the instruments
and not by subsurface condition. Gardner’s estimations of
sonic logs also are calculated from the same preprocessed input
logs.

Training results

After training the model with 113 epochs, we compare the pre-
dicted sonic log of one validation well with the actual sonic log and
with the log estimated from Gardner’s equation (Figure 8a). The
dropout layer is used to simulate a distribution of 100 predicted
sonic logs, whose mean is the final result. The 95% quantile is
an upper bound, and the 5% quantile is a lower bound. The uncer-
tainty range is very narrow, which cannot be observed easily in a
plot of all depths, so we illustrate the uncertainty estimation process
of three log samples at three different depths in Figure 8b. Figure 9a
shows a close match between our result and the measured sonic log
with a correlation coefficient of 88.3%, whereas Gardner’s estima-
tion achieves 87.6% correlation (Figure 9b).

We also train a bidirectional LSTM model and
a unidirectional ConvLSTM model to predict the
sonic log and compare with the bidirectional
ConvLSTM output. The correlation and R2 be-
tween bidirectional LSTM output and true sonic
log are 86.1% and 0.72, respectively. The corre-
lation and R2 between unidirectional ConvLSTM
output and true sonic log are 86.9% and 0.74,
respectively. The bidirectional ConvLSTM per-
forms a little better than bidirectional LSTM
and unidirectional ConvLSTM in capturing the
funnel shape in the log (Figure 10).

TESTING

We apply the trained model to predict the
sonic logs for three blind wells from the Norwe-
gian continental shelf (NCS) and compare the
predicted sonic logs with the actual sonic logs
and with the logs estimated from Gardner’s equa-
tion (Figures 11a, 12a, and 13a). The dropout
layers are used to simulate a distribution of
100 predicted sonic logs to quantify the uncer-
tainty (Figures 11b, 12b, and 13b). There is a

Figure 16. Different intervals of interest in testing well 4: true sonic log (black), pre-
dicted sonic log (red), Gardner’s estimation (green).

WA168 Pham et al.

D
ow

nl
oa

de
d 

05
/1

7/
20

 to
 1

41
.1

64
.5

5.
16

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



close match between our result and the measured sonic log of the
first well with a correlation coefficient of 96.1%, whereas Gardner’s
estimation achieves 72.83% correlation. The term R2 value between
the predicted sonic log and the true sonic log is 0.915, whereas
Gardner achieves 0.72. The predicted sonic log in the second well
matches the actual sonic log with a correlation coefficient of 96%,
whereas the correlation coefficient for Gardner’s estimation is
83.9%. The term R2 value is 0.91 for our prediction, whereas the
R2 value for Gardner’s estimation is 0.61. Although the sand for-
mation, after the shale layer, from 4226 m in the first well and from
3575 m in the second well seems to be missing in the third well,
probably due to faulting, the trained model still produces a good
match between the predicted and true sonic logs with a correlation
coefficient of 92.8% and without knowing about the lithology,
whereas Gardner’s estimation achieves 83.4% correlation. The term
R2 values are 0.84 and 0.32 for our estimation and Gardner’s es-
timation, respectively. Figure 14 shows the crossplot between the

Figure 17. (a) Testing well 5: gamma-ray log, density log, predicted sonic log (red), true sonic log (black), Gardner’s estimation (green), and
bidirectional LSTM output (light blue). (b) Monte Carlo simulation at three different depths in testing well 5: 1145.7 m (top row-left), 2151.6 m
(top row-right), and 2456.4 m (bottom row-center). The vertical axes are the probability density functions.

Figure 18. Different intervals of interest in testing well 5: true sonic
log (black), predicted sonic log (red), and Gardner’s estimation
(green).
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density logs versus the predicted sonic logs and the crossplot be-
tween the density logs versus the actual sonic log at the oil-saturated
sand layers below the shale layer. The correlation coefficients be-
tween the predicted sonic log and the actual sonic log are 99.37%,
99.88%, and 99.7% in the first, second, and third well, respectively.
We also apply the trained model to predict the missing sonic log

of one blind well from UKCS with an addition of uncertainty es-
timation using dropout layers (Figure 15). The Monte Carlo simu-
lation at three different depths is shown in Figure 15b. The predicted
sonic log matches the measured log with a correlation coefficient of
96.7%, whereas Gardner’s estimation achieves very low correlation.
The problem with Gardner’s estimation is that it is difficult to
choose proper parameters for the layer with very low density greater
than 1682.5 m (Figure 16).

The ConvLSTM outputs and LSTM outputs do not differ signifi-
cantly, probably because there are no significant local shapes in
the logs.

DISCUSSION

We apply our proposed trained model on the last testing well from
offshore Canada, where the geologic conditions are very different from
the training wells, to test for the generability of the model (Figure 17a).
It produces a reasonable match between the predicted and actual sonic
logs with a correlation coefficient of 92%, whereas Gardner’s estima-
tion produces a 64.8% correlation. At two intervals of interest, the
predicted sonic log matches the actual sonic log with accuracy similar

Figure 19. (a) Testing well 6: gamma-ray log, density log, predicted sonic log (red), true sonic log (black), Gardner’s estimation (green), and
bidirectional LSTM output (light blue). (b) Monte Carlo simulation at three different depths in testing well 6: 700 m (top row-left), 1200 m (top
row-right), and 1600 m (bottom row-center). The vertical axes are the probability density functions.
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to the conventional method (Figure 18), although our method does not
need to be applied within different geologic intervals.
We also use the trained model to predict the sonic log at a well in

the onshore Teapot Dome data set. The trained model can produce a
good estimation of the sonic log for the last testing well, with a
correlation of 95.2%, and without being trained on the wells in
the testing area (Figure 19a). It can be explained that the network
has the ability to learn a nonlinear relationship between gamma-ray,
density, neutron porosity, and sonic logs when being calibrated to
different rock types of the training data. However, the generalizabil-
ity of our method can be improved by fine-tuning the trained model
with new wells when it is applied to different areas. We can freeze
the trained parameters except in the last FCNN layer and retrain the
model with available wells in areas of interest.

CONCLUSION

We propose a method for estimating missing sonic logs from
gamma-ray, neutron porosity, and density logs using a deep-learn-
ing model consisting of BRNN with ConvLSTM blocks cascaded
with FCNNs. Our method, which takes into account the geologic
trend and the local shape of logs, predicts sonic logs matching ac-
tual sonic logs with high accuracy. The proposed approach shows
an improvement over a conventional method for estimating missing
sonic logs without being applied internally and with an addition of
uncertainty estimation by using dropout layers. The approach can
be extended to predict other types of logs from different kinds of
input logs. Future research will include other types of uncertainty
such as data uncertainty and will make the local window size based
on the geologic settings as an input of the network. The rock physics
model can be combined with the deep-learning approach to create
better predictions for missing logs.
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