Downloaded 02/11/25 to 23.228.113.170. Redistribution subject to SEG license or copyright; see Terms of Use at http://library.seg.org/page/policies/terms

DOI:10.1190/ge02024-0041.1

GEOPHYSICS, VOL. 90, NO. 1 (JANUARY-FEBRUARY 2025); P. F1-F10, 9 FIGS.
10.1190/GE02024-0041.1

W) Check for updates

CIGVis: An open-source Python tool for the real-time interactive
visualization of multidimensional geophysical data

Jintao Li', Yunzhi Shi?, and Xinming Wu'

ABSTRACT

As Python’s role in processing and interpreting geophysical
data expands, the need for a Python-based tool tailored for
visualizing geophysical data has become increasingly critical.
In response, the Computational Interpretation Group Visuali-
zation tool (CIGVis) — a fully open-source Python tool op-
timized for researchers and licensed under the Massachusetts
Institute of Technology License — has been developed. It
specializes in the real-time interactive visualization of multi-
dimensional geophysical data, including volumetric data of
geophysical properties, meshes of geologic objects (e.g., faults,
horizons, and geobodies), points and tubes of well-log data.
CIGVis enables users to interact with the data through oper-
ations such as rotation, panning, magnifying, and dragging sli-
ces. It also supports a multicanvas functionality, allowing a
simultaneous visualization across multiple subcanvases with
a unified camera perspective. Its ease of use allows for effective
visualization with just a few lines of code across all major
operating systems and extends to desktop and Jupyter environ-
ments, facilitating code execution in various settings. The core
functionalities of CIGVis are exemplified using standard geo-
physical data sets, such as the F3 data set.

INTRODUCTION

In the field of geophysics, data visualization is not merely a
means of data representation but a key to deeply understanding
the subsurface. Lynch (2008, 2023) regards data visualization as
a third type of resolution, beyond temporal resolution (the ability
of a seismic wavelet to resolve thin reflections) and spatial resolu-
tion (the capacity of a seismic wavelet to resolve closely spaced

geologic details). Neglecting the role of visualization could
detrimentally affect the understanding of geophysical data.

Geophysical data often encompass multiple dimensions, obtained
through various collection instruments, methods, and processing
techniques. These include 1D well logs, 2D seismic sections, seis-
mic horizons, 3D seismic surveys, and 4D time-lapse seismic data,
among others. Each data type provides unique insights into the
subsurface. Converting these data into intuitive visuals is crucial
for geologic interpretation and resource assessment. Visualizing
these data typically requires 3D visualization technologies, enabling
scientists and engineers to view and interpret the data in a way that
reveals their true form in the subsurface.

Over the past few decades, numerous commercial software pro-
grams have been developed for the interactive visualization of geo-
physical data. These tools allow for in-software data analysis,
interpretation, and identification of geologic structures, such as faults,
horizons, and channels. Well-established software such as Schlum-
berger’s Petrel (Schlumberger, 2024), Halliburton’s Landmark Deci-
sionSpace (Halliburton, 2024), and GeoSoftware’s HampsonRussell
Software (GeoSoftware, 2024) have evolved over the years, offering
comprehensive functionalities for a wide range of tasks. However,
their expensive licensing fees and proprietary restrictions can be pro-
hibitive for young researchers and academic institutions, and their
complexity often introduces a steep learning curve.

With the rise of artificial intelligence, machine learning and deep
learning are being widely used in geophysics for many tasks, such
as data processing (Yu et al., 2019; Li et al., 2021), seismic inter-
pretation (Wu et al., 2019; Li et al., 2023), and inversion (Das et al.,
2019). Therefore, Python, a premier language in deep learning, has
significantly advanced the processing, analysis, interpretation, and
inversion of geophysical data. However, for many practitioners,
there is a significant gap between performing computations using
deep-learning frameworks and visualizing the results with industrial
software. This gap arises because the outputs of deep-learning

Peer-reviewed code related to this article can be found at this paper’s Supplemental Materials link.
Manuscript received by the Editor 31 January 2024; revised manuscript received 28 September 2024; published ahead of production 15 October 2024;

published online 19 December 2024.

!School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China and Mengcheng National Geophysical Observatory,
University of Science and Technology of China, Hefei, China. E-mail: lijintao @mail.ustc.edu.cn; xinmwu@ustc.edu.cn (corresponding author).

Amazon, Austin, Texas, USA. E-mail: shiyunzh@amazon.com.
© 2025 Society of Exploration Geophysicists. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1190%2Fgeo2024-0041.1&domain=pdf&date_stamp=2024-12-19

Downloaded 02/11/25 to 23.228.113.170. Redistribution subject to SEG license or copyright; see Terms of Use at http://library.seg.org/page/policies/terms

DOI:10.1190/ge02024-0041.1

F2 Li et al.

frameworks are typically in the form of tensors or arrays, whereas
industrial software requires input in specific file formats. The con-
version between tensor formats and industrial standard data formats
necessitates reorganizing the tensor data, adding special headers,
and writing them into a particular format. Conversely, extracting
data from industrial software involves removing the headers and
converting the data back into tensors. For example, a 3D seismic
data set often needs to be converted to the SEG-Y format to be sup-
ported and visualized by industrial software. From the user’s point
of view, this conversion process can be cumbersome, requiring
conversion codes and consuming a substantial amount of time.
As more workflows shift toward Python, there is a growing need
for a Python-based geophysical data visualization tool, eliminating
the additional conversion steps.

Several Python visualization tools exist, such as Matplotlib (Hunter,
2007) — a static and foundational plotting library; VisPy
(Campagnola et al., 2015) — a high-performance real-time multidi-
mensional visualization library; visualization toolkit (VTK) (Kitware,
2024) — an open-source software system for image processing, 3D
graphics, volume rendering, and visualization; PyVista (Sullivan and
Kaszynski, 2019) — a VTK-powered user-friendly package; and
Plotly (Inc, 2024) — an interactive, open-source, and browser-based
graphing library for Python. However, these tools either lack real-time
interactive 3D visualization capabilities or are not tailored for geo-
physical data. For instance, Matplotlib is suitable for static 2D plotting,
but it lacks the capability for real-time interactive 3D plotting. Libra-
ries such as PyVista and Plotly offer basic real-time interactive features
such as rotation and magnifying. However, they fall short of providing
the ability for real-time interaction with 2D slices, which is a funda-
mental requirement in geophysics. This capability is essential for con-
veniently and quickly examining the internal features of 3D data.
VisPy supports the ability to interact with 2D slices in real time
(VTK might support this ability), but implementing this functionality
requires a substantial amount of additional customization. Their basic
functionalities do not support these features out of the box, and this
capability is not mentioned in their documentation.

Although the aforementioned Python packages are robust and ver-
satile foundational libraries designed for a wide range of applications,
their generality can sometimes come at the cost of specialization. Us-
ing these general-purpose tools effectively in geophysics requires sig-
nificant adaptation and a significant amount of additional code to
meet the specific needs of geophysical research. For example, imple-
menting the ability to move 2D slices in real time interactively, visu-
alizing well logs, integrating well logs with 3D seismic data,
overlaying various data sets (such as seismic data, faults, and imped-
ance), and handling the unique coordinate system used in geophysics
(wherein depth increases downward rather than upward) demand ex-
tensive customization. Seismic Canvas (Shi, 2024) is a Python tool
specifically designed for the interactive visualization of 3D seismic
data; however, it offers a relatively limited set of functionalities. In
other words, existing tools do not offer out-of-the-box solutions for
geophysical applications. In addition, their interfaces are not specifi-
cally tailored for geophysical data, which may result in some unique
requirements that are not met with geophysical data.

In this paper, we introduce the Computational Interpretation Group
Visualization tool (CIGVis), which is a Python tool developed by the
Computational Interpretation Group (CIG), a research group at the
University of Science and Technology of China, for the real-time in-
teractive visualization of multidimensional geophysical data. Designed

primarily for researchers, CIGVis enables the rapid visualization of
multidimensional geophysical data with just a few lines of code
(out-of-the-box application). This encompasses data such as 3D seis-
mic data, horizons, faults, well logs, and geologic bodies, thereby
allowing researchers to concentrate more on the analysis and interpre-
tation of geophysical data. A key strength of CIGVis is its interactive
features, which allow users to engage dynamically with the data
through operations such as rotation, panning, magnifying, and drag-
ging slices. In addition, CIGVis supports multicanvas functionality,
allowing for simultaneous visualization on multiple subcanvases with
a unified camera perspective. This capability is crucial for comparative
analysis between different data sets.

Built on Seismic Canvas, CIGVis retains the real-time slice-drag-
ging feature and significantly enhances and expands its functional-
ity. The underlying architecture of CIGVis is based on libraries such
as Vispy, Plotly, and Matplotlib. Rather than surpassing the existing
Python visualization tools, our work focuses on adapting these
foundational tools to serve geophysical data visualization needs bet-
ter. We leverage the existing capabilities to make them more suitable
for geophysical data visualization scenarios. We have integrated
these libraries and written a considerable amount of custom code
to cater to geophysical needs across various environments.

CIGVis has been optimized for compatibility across major oper-
ating systems and supports desktop and Jupyter environments, en-
suring wide accessibility and flexibility for researchers. As a fully
open-source software, CIGVis adopts the Massachusetts Institute of
Technology License (MIT license; please see the “Data materials
and availability” section). CIGVis is continuously evolving, with
regular updates to its source code, documentation, and demos to
cater to the expanding needs of users.

DESIGN PHILOSOPHY AND FRAMEWORK

CIGVis is a software specifically crafted for the visualization of
geophysical data and tailored for researchers. Its architecture and
features are shown in Figure 1. CIGVis’s design philosophy embra-
ces simplicity and real-time interactive 3D visualization while en-
suring that the software maintains excellent extensibility and the
freedom of open-source code. Extensibility means users can lever-
age lower-level libraries to create data formats that are not natively
supported by CIGVis and integrate them with its existing features
for seamless visualization.

Simplicity is reflected in the ease of installation and the user-
friendly interface of CIGVis. Leveraging Python’s cross-platform
capabilities, CIGVis can be seamlessly installed on any major op-
erating system using pip, eliminating the need for downloading the
source code and navigating complex compilation steps. Moreover,
CIGVis offers compatibility with Jupyter environments, although
with some functionality constraints compared with a desktop envi-
ronment. This ease of use empowers researchers to efficiently visu-
alize 3D data with just a few lines of code.

Developed on the foundations of Vispy, Plotly, and Matplotlib,
CIGVis offers flexible tools for visualizing diverse geophysical data
and allows users to adapt visualizations to specific research needs. It
provides advanced application programming interfaces (APIs) for
geophysical data visualization out of the box, allowing researchers
to focus on the data’s characteristics without getting bogged down
in technicalities. CIGVis supports real-time interactive visualization
of 3D data, such as 3D seismic and geomagnetic data, enabling users
to freely move slices within the data to observe internal features

Downloaded 02/11/25 to 23.228.113.170. Redistribution subject to SEG license or copyright; see Terms of Use at http://library.seg.org/page/policies/terms

DOI:10.1190/ge02024-0041.1

CIGVis: Visualization of geophysical data F3

deeply. This means that even if CIGVis does not cover certain
functionalities, users familiar with these two libraries can extend
them as needed. Because we are more familiar with VisPy and Plotly,
we chose these libraries as the foundation for our 3D visualization
work. However, Py Vista can also achieve 3D interactive visualization
within Jupyter notebooks, though it, similar to Plotly, only supports
basic operations such as rotation and magnifying. In addition, we
think that Plotly’s 3D visualization capabilities are more detailed
and versatile compared with PyVista. Plotly offers more flexibility
and aesthetic appeal in axis visualization, and it also has a larger com-
munity (15.5k stars on GitHub versus 2.4k for PyVista). On desktop
environments, we opted for VisPy as our foundational library because
PyVista’s high level of encapsulation, although user friendly, makes it
more complex to decompose, customize, and implement its real-time
interactive 2D slice-dragging ability. Furthermore, CIGVis is gov-
erned by the MIT license, an open-source software license that grants
users wide-ranging freedoms to use, modify, and distribute.

CIGVis is composed of several modules, each serving a specific
purpose. The Utils module provides essential functions for handling
geophysical data, including reading and writing various data formats,
processing coordinate systems, and providing common functional-
ities. The 2D canvas module, based on Matplotlib, is specifically de-
signed for visualizing data on a 2D canvas in research. The 3D canvas
is the core of CIGVis, encapsulating high-level APIs for visualizing
geophysical data. The Colormap module offers commonly used col-
ormaps in geophysics, which are found in commercial software but
not always included in Matplotlib. It also provides functions for users
to adjust the colormaps as needed. The graphical user interface (GUI)
module provides some limited but functional simple GUIs, as com-
plex GUIs are not our development goal. Specifically, these func-
tional features allow for the quick and convenient visualization of
3D geophysical data, along with the ability to easily adjust data slices
and camera perspectives, all without requiring any coding.

The 3D canvas can handle various geophysical data, including
seismic and geomagnetic data, horizons, faults, well logs, and 3D
geologic bodies such as salt, channels, and paleokarst, and it supports
an overlay display (e.g., showcasing seismic data with their relative
geologic time). Beyond visualization, users can
perform multiple interactive operations in the

3D volume

CIGVis represents a 3D volume by displaying multiple 2D slices
in different orientations. Figure 2a shows an example of a 3D volume
represented by multiple 2D slices in the x-, y-, and z-directions. The
basic real-time interactions with the 3D canvas, such as rotation, pan-
ning, and magnifying, can be performed with the mouse and key-
board. Moreover, each slice is presented as an image, allowing for
rapid rendering. Users can move any 2D slice in real time by clicking
and dragging the mouse, conveniently observing data at any point in
3D space. The basic interactions with the tool can be seen in the GIF
image provided in supplemental S1. A concise code example for
quickly visualizing 3D data is shown in the following:

A demo for quickly visualizing 3D data sets
(e.g., seismic data)

import numpy as np
import cigvis

d is a 3D numpy array
d = np.load(‘demo.dat’,
reshape (256, 256, 256)

np.float32).

create slices represent the 3D data set
node = cigvis.create_slices(d)

plot, visualize the data set
cigvis.plot3D(node)

Geologic bodies

A precise depiction of 3D geologic bodies is crucial for subsur-
face resource exploration. For instance, channels and paleokarst are
excellent hydrocarbon reservoirs, and identifying the boundaries of
salt is key for velocity modeling and seismic structural analysis.
Typically, artificial intelligence (Al) identification generates a

3D canvas, such as rotation, movement, magnifi- Environments Modules Interactions
cation, slice dragging, and multicanvas displays.
The multicanvas feature allows users to divide a — (e_::_) ::i:{nic .
single canvas into multiple subcanvases. Each data) Rotation
subcanvas can load data independently while shar- Utils Mfens
ing a unified camera perspective, which facilitates surfaces Panning
the comparison between different data sets.
2D canvas Faults
Desktop Magnify
CORE FEATURES 3D canvas S Well logs -
The core feature of CIGVis lies in its 3D canvas Jupyter Geologic Drag slices
functionality. Users can visualize various types of Colormap bodies
geophysical data through simple code on this can- _
vas. As shown in Figure 2, we demonstrate CIG- Ul Overlay Multicanvas
Vis’s key features using the F3 data set. Notably,
in the 3D canvas, all elements (called nodes) are —
independent of each other. By progressively add-

ing new elements to the canvas, we illustrate the
powerful capabilities of CIGVis.

Figure 1. The design framework of CIGVis.

https://library.seg.org/doi/suppl/10.1190/GEO2024-0041.1/suppl_file/S1.zip

DOI:10.1190/ge02024-0041.1

F4

Li et al.

1.5 b)

o 9
° °
= 3
- 00 £ 00 £
) g_) g_
Q Q
£ & € &
= g o
-0.5 5 —0.55
7} [}
wn n
-10 -10
-15 -15
36 20
1.0
© d
0.8 0.8
°
o
o
063 o.s%
o 2 s =
3 £ @ =
] Q o
£ £ E 2
F & i g
0.4 8 04'E
w o
v
£
H

Time (s)

Well-log impedence [105 kg/(m?'s)]
Time (s)

0.2

7
o
Seismic impedance [kg/(m2's)]

Downloaded 02/11/25 to 23.228.113.170. Redistribution subject to SEG license or copyright; see Terms of Use at http://library.seg.org/page/policies/terms

Figure 2. Demonstrating the core features of CIGVis using the F3 data set. We sequentially add geophysical data to a 3D canvas, showcasing
the (a) 3D seismic data, (b) salt body, (c) fault surface with colors representing the fault likelihood, (d) horizons in various colors (with colors
indicating unconformity likelihood for the upper one), (e) well logs with colors representing the impedance, and (f) an overlay of seismic data
with their impedance.

Downloaded 02/11/25 to 23.228.113.170. Redistribution subject to SEG license or copyright; see Terms of Use at http://library.seg.org/page/policies/terms
DOI:10.1190/ge02024-0041.1

CIGVis: Visualization of geophysical data F5

binary or probabilistic 3D array. CIGVis uses the marching cubes
algorithm (Lorensen and Cline, 1987) to extract geologic body
boundaries and displays them using a closed mesh constructed with
triangular grids. Figure 2b shows a 3D representation of a salt body
in the F3 data set.

Faults

Faults are vital pathways for hydrocarbon migration and play a
crucial role in oil and gas exploration and natural hazards assess-
ment. CIGVis conveniently visualizes fault planes, not only display-
ing their location but also superimposing the fault attributes (the
fault likelihood [Hale, 2012] in this case and its colors representing
the probability of the fault) in an intuitive manner, as shown in
Figure 2c. In addition, the results of Al fault identification, which
are often binary or discrete 3D arrays, can be overlaid on seismic
data for visualization (see the “Overlay” and “Colormap” sections).

Horizons

Horizons are geologically significant underground interfaces,
often considered to represent the same geologic period. Visualizing
horizons is one of the most basic and vital requirements in geo-
physical visualization. CIGVis can process depth matrices of the
same size as seismic horizons as well as handle 3D spatial coordi-
nates, whether ordered or not. Users can display depth or seismic
amplitude data on horizon surfaces and customize the colors for
each point. Figure 2d shows two horizons: the lower horizon dis-
plays a full spatial distribution in yellow, whereas the upper horizon
is an unconformity surface with colors representing its likelihood
(Wu and Hale, 2015) (see the “Well logs” and “Jupyter” sections).

Well logs

A well log typically includes several curves,
such as gamma, velocity, and density. As shown
in Figures 2e and 3, CIGVis visualizes well logs
using tubes with varying sizes and colors, where
the tube’s attributes represent the relative magni-
tude of the curve values. Alongside the tube that
indicates the density through its color, additional
curves such as velocity, gamma, and impedance
are depicted as mesh surfaces attached to the
tube, with the mesh’s color and width varying
based on the respective curve magnitudes. Three
distinct surrounding mesh layers represent veloc-
ity, gamma, and impedance. CIGVis provides the
capability to display vertical wells (Figure 3a)
and deviated wells (Figure 3b) in conjunction
with seismic data. The magnified view highlights
the well logs for clearer observation, which re-
moves the coordinate grid. Moreover, when
the seismic slice is adjusted to the well’s posi-
tion, users can easily compare the seismic data
with the well-log curves. In addition, CIGVis
supports the representation of well logs as lines
in 3D space (see the “Well logs” and “Jupyter”
sections). For more detailed comparisons, a GIF
in supplemental S1 shows different styles of
well-log visualizations.

Overlay

Overlaying two or more types of 3D data helps us understand the
correspondence between different data sets and verify the consistency
of the results with reality. CIGVis easily achieves the overlay display
of various data types. For example, Figure 2f shows the effect of over-
laying 3D seismic data with its impedance. This display method not
only retains the basic information of the seismic data, such as the
horizons, but also clearly examines the accuracy of the impedance
through the contrast with the foreground color. In addition, geologic
formations such as faults and channels can be overlaid on seismic
images to analyze the distribution of these geologic structures (see
Figures 4c¢ and “Overlay” and “Colormap” sections).

The following is a sample code for quickly achieving the result
shown in Figure 2f:

Example to visualize Figure 2f

import Python libraries
import numpy as np

import cigvis

from cigvis import colormap

Read geophysical data sets

#...

seis, salt, intp, unc: 3D numpy arrays, means
seismic, salt, impedance, likelihood

hz2, unc2: 2D numpy arrays, means horizon,
unconformity

log_position, log values: logs’ trajectory
and curve values (impedance, density, ...)

Figure 3. Display of the well logs in CIGVis, combining (a) vertical and (b) deviated
wells with seismic data. The image is magnified to highlight the well logs, so the coor-
dinates are omitted. The tube represents the well-log trajectory, with color indicating den-
sity and surrounding mesh surfaces showing velocity, gamma, and impedance. The size
and color of the tube reflect the magnitude of each curve value. Dragging a seismic slice to
the well location allows for easy comparison between the well log and seismic data.

https://library.seg.org/doi/suppl/10.1190/GEO2024-0041.1/suppl_file/S1.zip

Downloaded 02/11/25 to 23.228.113.170. Redistribution subject to SEG license or copyright; see Terms of Use at http://library.seg.org/page/policies/terms

DOI:10.1190/ge02024-0041.1

F6 Li et al.

set colormap and alpha for impedance data
(foreground image)

fg_cmap = colormap.set_alpha(‘jet’, 0.6)

create slices for a 3D seismic data set

nodes = cigvis.create_slices(seis)

create salt body in cyan color

nodes += cigvis.create_bodys(salt, 0.0, 0.0,

color = ‘cyan’)

horizons, hz2 is point positions, set as
yvellow

nodes += cigvis.create_surfaces([hz2],

color = ‘yellow’)

unconformity, set color as likelihood, unc is
a 3D array

nodes +=
volume = unc, value_type = ‘amp’)

log _position isa (N, 3) array, log_value is a
(N, m) value array of logs

nodes += cigvis.create_well_logs(log_posi-
tion, log _values)

create fault faces

nodes += cigvis.create_fault_skin(root +
‘skins/ ")

overlay seismic data (background)
impedance (foreground)

cigvis.create_surfaces([unc2],

and its

a) A b)

Figure 4. The multiple canvas feature of CIGVis. A single canvas can be divided into

nodes = cigvis.add_mask (nodes,
fg_cmap = £g_cmap)

add axes

nodes += cigvis.create_axis (seis.shape,
mode = ’‘axis’, north_direction = [0.9, 0.03],
intervals = [0.025, 0.025, 0.0041])

add colorbar for the foreground impedance
data set

nodes +=

intp,

cigvis.create_colorbar_from_
nodes (nodes, “Impedance”, select = “mask”)

plot, visualize them

cigvis.plot3D(nodes)

Multiple canvases

A distinctive feature of CIGVis is its support for multiple canvases.
This feature allows users to divide a single canvas into multiple sub-
canvases, each hosting independent nodes. Each subcanvas is inde-
pendent, and any interactive operations can be applied to individual
subcanvases. As shown in Figure 4, the 3D canvas is divided into four
subcanvases: Figure 4a shows the 3D seismic data, Figure 4b shows
the impedance data, Figure 4c shows the grayscale seismic data
overlaid with the channel data, and Figure 4d simultaneously shows
the seismic and channel body data. The data sets are sourced from
cigChannel (Wang et al., 2024). A key functionality in this setup is
the unified camera perspective across all the can-
vases. This means any action, such as rotation,
panning, or magnifying, applied to one canvas af-
fects all the others in a synchronized manner. For
instance, if a slice is dragged in a specific direction
in Figure 4a (indicated by the red arrow), the cor-
responding slices in other subcanvases will also
move synchronously. This multicanvas display
is particularly valuable for conducting a compar-
ative analysis between different data sets, offering
an efficient way to compare the various results and
explore relationships between different types of
data. A GIF image in supplemental S1 shows
the dynamic effects of this feature.

In addition, this functionality might be suited
for analyzing 4D geophysical models in relation
to monitoring problems. As shown in Figure 5,
we take CO, monitoring as an example to illus-
trate how to use CIGVis for displaying the 4D
seismic monitoring of CO,. We refer to the work
of Sheng et al. (2023) to demonstrate the distri-
bution of CO, plumes in the subsurface over dif-
ferent years. By linking various subcanvases, we
can intuitively understand the temporal flow and
changes in underground CO, plumes. A supple-
mental S1 GIF image dynamically shows this
capability.

Jupyter

multiple subcanvases, each independently displaying different data sets from cigChannel

(Wang et al., 2024): (a) seismic data, (b) impedance, (c) seismic data with channel labels
(using an overlay), and (d) seismic data with the channel body. When a seismic slice is
dragged along the red arrow in (a), the corresponding slices in other subcanvases move in a
similar manner under a unified camera perspective. This can facilitate the comparative

analysis of different data sets and results.

The 3D canvas of CIGVis offers two types of
APIs to support desktop and Jupyter environ-
ments. Given that Jupyter is a web-based tool,
it has certain performance limitations, such as

https://library.seg.org/doi/suppl/10.1190/GEO2024-0041.1/suppl_file/S1.zip
https://library.seg.org/doi/suppl/10.1190/GEO2024-0041.1/suppl_file/S1.zip

Downloaded 02/11/25 to 23.228.113.170. Redistribution subject to SEG license or copyright; see Terms of Use at http://library.seg.org/page/policies/terms

DOI:10.1190/ge02024-0041.1

CIGVis: Visualization of geophysical data F7

the ability to drag slices in real time and rendering speed. In the
Jupyter environment, CIGVis is based on Plotly, and its rendering
results may differ from those in the desktop environment without
a reduction in quality. In fact, some users might prefer the rendering
effects in the Jupyter environment. Figure 6 shows the visualization
result of the F3 data in the Jupyter environment, where well-log data
are displayed as lines. Although the desktop and Jupyter environ-
ments share a set of function signatures, CIGVis automatically
calls the corresponding code execution based on the environment.
However, there may be slight differences in the function parameters
(especially those related to the colorbar) between these two environ-
ments. In the future, we aim to improve the functionalities in the
Jupyter environment and strive for a unified API across both envi-
ronments.

Colormap

The Colormap module of CIGVis not only provides various col-
ormaps that can be used as extensions to Matplotlib but also imple-
ments conversion functions between Matplotlib, VisPy, and Plotly.
Moreover, the module defines some practical color processing func-
tions, such as color blending, custom colormaps, handling discrete
colormaps (often related to the colorbar), and transparency settings.
Using these functions, one can create rich and varied 3D visualiza-
tion effects. For example, as shown in Figure 7, CIGVis achieves
overlaying relative geologic time (RGT) with seismic data, partial

RGT with seismic data, faults with seismic data, and a comprehen-
sive overlay of the partial RGT and faults with seismic data by ap-
propriately setting the transparency.

5.70M

4.90M

~-4.10M

(s) oWl

3.30M

Seismic impedance [kg/(m?s)]

251M

Inline (km)

1.71M

Figure 6. Visualization of the F3 data set using the Jupyter envi-
ronment API. The meaning of the colors is consistent with
Figure 2e. This example demonstrates CIGVis’s capability within
the Jupyter environment, showing that it can achieve functionality
similar to the desktop version, although there are some differences
in the features and performance.

,‘\(
Ly
(g AN

4
it GO
y\L 3L A

.

u"/”{\\
N

Figure 5. An example using CIGVis to display the distribution of CO, plumes over different years, based on the work of Sheng et al. (2023). A
GIF image dynamically shows this capability in supplemental S1. This demonstrates how this functionality might be suited for analyzing 4D

geophysical models in relation to monitoring problems.

https://library.seg.org/doi/suppl/10.1190/GEO2024-0041.1/suppl_file/S1.zip

Downloaded 02/11/25 to 23.228.113.170. Redistribution subject to SEG license or copyright; see Terms of Use at http://library.seg.org/page/policies/terms

DOI:10.1190/ge02024-0041.1

F8 Li et al.

Data format and large data sets

As a Python tool focused on visualization, CIGVis primarily ac-
cepts numerical Python (NumPy) (Harris et al., 2020) arrays or lists
of NumPy arrays as input. To accommodate the fact that many users
may have data in SEG-Y format, the open-source community offers
several excellent tools for converting SEG-Y to NumPy arrays. These
tools include cigsegy (Li, 2024), segyio (Equinor, 2024), seg-sak
(Hallam, 2024), and others. Users can choose from these options
to meet their specific needs (based on speed considerations, we rec-
ommend cigsegy and segyio). The combination of CIGVis and any of
these SEGY conversion tools can cater to the requirements of most
users. In addition, open volume data store (OpenVDS) is an emerging
efficient data format particularly suitable for visualizing large data sets
(such as seismic data exceeding 50 GB). CIGVis provides an interface
similar to NumPy, capable of calling OpenVDS to read the data and
simulate NumPy’s slicing behavior. Tests on a MacBook Air 2022
with 8 GB of memory have shown that large data sets, specifically
81 GB in the OpenVDS format (which would be approximately
108 GB in the SEG-Y format), can be visualized rapidly using CIG-
Vis, typically within 10 s, as shown in the supplemental S1 GIF im-
age. Overall, the visualization of these three types of data only differs
slightly during the reading stage. An example of how to read different
data formats in CIGVis is shown in the following:

The example of how to read a 3D data set in
different common formats

import Python libraries

import numpy as np

import cigvis

from cigsegy import SegyNP # or segyio, segysak

120
a) 200 b
175 100
150
2 g0 80
2 wsg g 5
F Z F 2
100
60
75
50 /,,,i 075 o 75\‘\\“\ 40
’/o,,, 15 1 s 59\“"
120
C) x8 d)

Time (s)
Time (s)

50

p 40
™, "@
100

Figure 7. The CIGVis allows for diverse visual effects by adjusting
the colormap module. (a) Seismic data displayed in conjunction
with RGT; (b) adjusting the colormap upper limit to mask RGT
values greater than 120, which typically correspond to areas of less
interest; (c) overlaying fault visualization results based on (a) with
each fault represented in a different color; and (d) overlaying fault
visualization results based on (b). In addition, CIGVis supports vari-
ous styles for coordinate axes and unit displays, which can be easily
switched through parameters.

Example of 3D data in binary format

shape = (660, 781, 1001)

d = np.fromfile(‘demo.dat’,
reshape (shape)

np.float32).

Example of 3D data in SEG-Y format
Any of the SEG-Y conversion tools is OK
d = SegyNP (‘demo.segy’, iline =5, xline = 21)

Example of 3D data in VDS format

d = cigvis.io.VDSReader (‘demo.vds’)
showing the 3D data set: d

nodes = cigvis.create_slices(d)
cigvis.plot3D(nodes)

2D canvas

The 2D canvas module in CIGVis is a simple implementation
using Matplotlib, featuring several functions for visualizing geo-
physical data. This module was added to ensure the completeness
of CIGVis’s visualization capabilities and to offer convenience and
reference for geophysicists who are new to using Matplotlib. The
2D canvas meets the common visualization needs in geophysical
research and publications. It can be used in conjunction with
Matplotlib to create multiple subplots, supporting the display of

Time (s)

5.00
Crossline (km)

b Trace number
) 0 5 10 15 20 25 30 35 40 45
0.0
333 33id 3 E2L222222222%
0.1 3
2
02 334343333333883341
3
30'3 ;. 3 ‘-4 EET L
o XIS IITITITITIITIF IS .
g 0.4 3 11 'Y £ T
- $ CEELL0L24088D3 3311544444418
EEEEL S, (£11 €42 €243533231TT3 d)}}l:d--q--- 4
051 233227793349 iieTiisiiiz 343332353 3
q 314 {44711 4
0:6 1?1 355 1 ”!- 3323 $45%4
11 ? 1§§ i”’ :§= 14 {1113
3 k. 228
07| BWFIRITITI TN

Figure 8. A demo of the 2D canvas module. (a) The inline 259
section of the F3 data set corresponding to a cross section from
Figure 2e. It contains an overlay of seismic and impedance, with
the white line indicating an unconformity, the blue line representing
horizons, the black curve depicting the impedance well log, and the
shape of the salt body highlighted in cyan. (b) The first 50 traces of
the inline 259 section.

https://library.seg.org/doi/suppl/10.1190/GEO2024-0041.1/suppl_file/S1.zip

Downloaded 02/11/25 to 23.228.113.170. Redistribution subject to SEG license or copyright; see Terms of Use at http://library.seg.org/page/policies/terms

DOI:10.1190/ge02024-0041.1

CIGVis: Visualization of geophysical data F9

eoe
w8 e nm e
Fotder | 05 None
LoadFie | Tanspose on Ooff
heimut 50 Bevatic S0 % FoV: 30 ¢
N ms i mes ms
Aepect 1005 1y 1005 iz 100%
update params cear 0

I Masks Horiz Other
vmin: 2523 max: 213.02

cmap: stratum @ nterp: bilinear 6

Time (points)

100

120

Inline (points) gp

100

120 120

Figure 9. A simple GUI interface in CIGVis displaying a synthetic RGT volume.

common 2D images and 1D signals found in geophysics. Figure 8a
shows the seismic image of the F3 data set at inline 259, with blue
and white lines indicating the yellow horizon and unconformity
surface from Figure 2f, respectively. The black curve on the left
represents a well log at trace 33. Figure 8b shows the first 50 traces
in the inline 259 section, a display style frequently seen in geophysi-
cal research.

GUI support

Although developing a professional GUI is not the primary
goal of CIGVis (we focus more on simplicity and practicality for
researchers), we still offer some basic GUI functionalities, and
Figure 9 shows an example of the GUI These simple GUIs provide
limited features, such as allowing users to quickly visualize 3D data
by dragging and dropping files. These functional aspects specifically
include the ability to quickly and conveniently visualize 3D geo-
physical data as well as the capability to adjust slices and perspectives
interactively. Users can perform these tasks without needing to write
any code, allowing for efficient data exploration and visualization in
real time, which is especially useful for users who are not familiar
with programming or need a fast visualization solution.

CONCLUSION

This paper presents CIGVis, an open-source Python tool tailored
for visualizing multidimensional geophysical data. Addressing a
growing need within the geophysics community, CIGVis excels
in real-time interactive visualization, making multidimensional data
analyses more intuitive and accessible. Designed for wide acces-
sibility, CIGVis is compatible with major operating systems and
supports desktop and Jupyter environments

CIGVis’s interactive features, including rotation, panning, magni-
fying, and dragging slices, allow users to interact deeply with various
geophysical data types, such as 3D seismic data, faults, horizons,
and well logs. Its multicanvas functionality enables simultaneous

80 Crossline (points)

visualization across multiple subcanvases under
a unified camera perspective. This is particularly
valuable for comparative analysis, offering en-
hanced insights into complex geologic data sets.
Future development efforts will focus on
enhancing the coordinate system to support the
true geodetic coordinates and improving compat-
ibility with diverse data formats, particularly
those exported from commercial software such
as Petrel. Minor patches aimed at refining visu-
alization outcomes and improving the user expe-
rience will also be included. In addition, an
interactive Al visualization toolset is being de-
veloped, allowing users to provide real-time
feedback to Al models, such as refining fault
interpretation results through direct interaction.
The code and some GIFs for all the figures
in this paper can be found at https://cigvis
.readthedocs.io/en/latest/gallery/index.html.

ACKNOWLEDGMENTS

This work was supported by the National
Natural Science Foundation of China (grant
no. 42374127) and the China Postdoctoral Science Foundation
(grant no. 2024M753147) provided by Y. Li. We also thank the
USTC Supercomputing Center for computational resources. We
are grateful to the reviewers, especially editor-in-chief A. Guitton
and associate editor M. Ravasi, for their valuable comments, and we
appreciate the feedback from J. Yang, Z. Liu, and C. Dai.

DATA AND MATERIALS AVAILABILITY

As a fully open-source software, CIGVis adopts the Massachu-
setts Institute of Technology License (MIT license). Its source code
is available on GitHub at https://github.com/JintaoLee-Roger/
cigvis, and we also maintain detailed documentation at https:/
cigvis.readthedocs.io/en/latest/, where users can find a wealth of de-
mos. The code and some GIFs for all the figures in this paper can be
found at https://cigvis.readthedocs.io/en/latest/gallery/index.html.

REFERENCES

Campagnola, L., A. Klein, E. Larson, C. Rossant, and N. P. Rougier, 2015,
VisPy: Harnessing the GPU for fast, high-level visualization: Proceedings
of the 14th Python in Science Conference.

Das, V., A. Pollack, U. Wollner, and T. Mukerji, 2019, Convolutional neural
network for seismic impedance inversion: Geophysics, 84, no. 6, R869—
R880, doi: 10.1190/ge02018-0838.1.

Equinor, 2024, SegylO: Fast python library for SEG-Y files, https://github
.com/equinor/segyio, accessed 30 May 2024.

GeoSoftware, 2024, Hampson-Russell-seismic reservoir characterization
software, https://www.geosoftware.com/hampsonrussell, accessed 10
January 2024.

Hale, D., 2012, Fault surfaces and fault throws from 3D seismic images:
82nd Annual International Meeting, SEG, Expanded Abstracts, doi: 10
.1190/segam2012-0734.1.

Hallam, A., 2024, SEGY-SAK, https://trhallam.github.io/segysak/, accessed
30 May 2024.

Halliburton, 2024, Landmark software solutions, https://www.halliburton
.com/en/software, accessed 10 January 2024.

Harris, C. R., K. J. Millman, S. J. Van Der Walt, R. Gommers, P. Virtanen, D.
Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, and R. Kern, 2020,
Array programming with NumPy: Nature, 585, 357-362, doi: 10.1038/
$41586-020-2649-2.

https://cigvis.readthedocs.io/en/latest/gallery/index.html
https://cigvis.readthedocs.io/en/latest/gallery/index.html
https://cigvis.readthedocs.io/en/latest/gallery/index.html
https://cigvis.readthedocs.io/en/latest/gallery/index.html
https://github.com/JintaoLee-Roger/cigvis
https://github.com/JintaoLee-Roger/cigvis
https://github.com/JintaoLee-Roger/cigvis
https://cigvis.readthedocs.io/en/latest/
https://cigvis.readthedocs.io/en/latest/
https://cigvis.readthedocs.io/en/latest/gallery/index.html
http://dx.doi.org/10.1190/geo2018-0838.1
http://dx.doi.org/10.1190/geo2018-0838.1
http://dx.doi.org/10.1190/geo2018-0838.1
https://github.com/equinor/segyio
https://github.com/equinor/segyio
https://www.geosoftware.com/hampsonrussell
https://www.geosoftware.com/hampsonrussell
https://www.geosoftware.com/hampsonrussell
http://dx.doi.org/10.1190/segam2012-0734.1
http://dx.doi.org/10.1190/segam2012-0734.1
http://dx.doi.org/10.1190/segam2012-0734.1
https://trhallam.github.io/segysak/
https://trhallam.github.io/segysak/
https://trhallam.github.io/segysak/
https://www.halliburton.com/en/software
https://www.halliburton.com/en/software
https://www.halliburton.com/en/software
http://dx.doi.org/10.1038/s41586-020-2649-2
http://dx.doi.org/10.1038/s41586-020-2649-2
http://dx.doi.org/10.1038/s41586-020-2649-2

Downloaded 02/11/25 to 23.228.113.170. Redistribution subject to SEG license or copyright; see Terms of Use at http://library.seg.org/page/policies/terms

DOI:10.1190/ge02024-0041.1

F10 Li et al.

Hunter, J. D., 2007, Matplotlib: A 2D graphics environment: Computing in
Science & Engineering, 9, 90-95, doi: 10.1109/MCSE.2007.55.

Inc, 2024, Plotly: Interactive, scientific data visualization in your web
browser, https:/plotly.com/about-us/, accessed 10 January 2024.

Kitware, 2024, Visualization toolkit (VTK), https://vtk.org, accessed 10
January 2024.

Li, J., 2024, CIGSEGY: A tool for exchanging data between SEG-Y format
and NumPy array inside Python environment, https:/github.com/
JintaoLee-Roger/cigsegy, accessed 10 January 2024.

Li, J., X. Wu, and Z. Hu, 2021, Deep learning for simultaneous seismic
image superresolution and denoising: IEEE Transactions on Geoscience
and Remote Sensing, 60, 1-11, doi: 10.1109/TGRS.2021.3057857.

Li, J., X. Wu, Y. Ye, C. Yang, Z. Hu, X. Sun, and T. Zhao, 2023, Unsuper-
vised contrastive learning for seismic facies characterization: Geophysics,
88, no. 1, WA81-WAS9, doi: 10.1190/ge02022-0148.1.

Lorensen, W. E., and H. E. Cline, 1987, Marching cubes: A high resolution
3D surface construction algorithm: ACM SIGGRAPH Computer Graph-
ics, 21, 163-169, doi: 10.1145/37402.37422.

Lynch, S., 2008, More than meets the eye — A study in seismic visualiza-
tion: Ph.D. thesis, University of Calgary.

Lynch, S., 2023, High visual resolution interpretation: The case for virtual seis-
mic reality: The Leading Edge, 42, 541-549, doi: 10.1190/tle42080541.1.

Schlumberger, 2024, Petrel E & P software platform, https://www.software
.slb.com, accessed 10 January 2024.

Sheng, H., X. Wu, X. Sun, and L. Wu, 2023, Deep learning for character-
izing CO, migration in time-lapse seismic images: Fuel, 336, 126806, doi:
10.1016/j.fuel.2022.126806.

Shi, Y., 2024, Seismic-canvas: Interactive 3D seismic visualization tool,
https://github.com/yunzhishi/seismic-canvas, accessed 10 January 2024.

Sullivan, B., and A. Kaszynski, 2019, PyVista: 3D plotting and mesh
analysis through a streamlined interface for the Visualization Toolkit
(VTK): Journal of Open Source Software, 4, 1450, doi: 10.21105/
joss.01450.

Wang, G., X. Wu, and W. Zhang, 2024, cigChannel: A massive-scale 3D
seismic dataset with labeled paleochannels for advancing deep learning
in seismic interpretation: Earth System Science Data Discussions,
2024, 1-27, doi: 10.5194/essd-2024-131.

Wu, X., and D. Hale, 2015, 3D seismic image processing for unconformities:
Geophysics, 80, no. 2, IM35-IM44, doi: 10.1190/ge02014-0323.1.

Wu, X., L. Liang, Y. Shi, and S. Fomel, 2019, FaultSeg3D: Using synthetic
data sets to train an end-to-end convolutional neural network for 3D seis-
mic fault segmentation: Geophysics, 84, no. 3, IM35-IM45, doi: 10.1190/
2e02018-0646.1.

Yu, S.,J. Ma, and W. Wang, 2019, Deep learning for denoising: Geophysics,
84, no. 6, V333-V350, doi: 10.1190/ge02018-0668.1.

Biographies and photographs of the authors are not available.

http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1109/MCSE.2007.55
https://plotly.com/about-us/
https://plotly.com/about-us/
https://vtk.org
https://vtk.org
https://github.com/JintaoLee-Roger/cigsegy
https://github.com/JintaoLee-Roger/cigsegy
https://github.com/JintaoLee-Roger/cigsegy
http://dx.doi.org/10.1109/TGRS.2021.3057857
http://dx.doi.org/10.1109/TGRS.2021.3057857
http://dx.doi.org/10.1109/TGRS.2021.3057857
http://dx.doi.org/10.1109/TGRS.2021.3057857
http://dx.doi.org/10.1190/geo2022-0148.1
http://dx.doi.org/10.1190/geo2022-0148.1
http://dx.doi.org/10.1190/geo2022-0148.1
http://dx.doi.org/10.1145/37402.37422
http://dx.doi.org/10.1145/37402.37422
http://dx.doi.org/10.1145/37402.37422
http://dx.doi.org/10.1190/tle42080541.1
http://dx.doi.org/10.1190/tle42080541.1
http://dx.doi.org/10.1190/tle42080541.1
https://www.software.slb.com
https://www.software.slb.com
https://www.software.slb.com
https://www.software.slb.com
http://dx.doi.org/10.1016/j.fuel.2022.126806
http://dx.doi.org/10.1016/j.fuel.2022.126806
http://dx.doi.org/10.1016/j.fuel.2022.126806
http://dx.doi.org/10.1016/j.fuel.2022.126806
http://dx.doi.org/10.1016/j.fuel.2022.126806
https://github.com/yunzhishi/seismic-canvas
https://github.com/yunzhishi/seismic-canvas
http://dx.doi.org/10.21105/joss.01450
http://dx.doi.org/10.21105/joss.01450
http://dx.doi.org/10.21105/joss.01450
http://dx.doi.org/10.21105/joss.01450
http://dx.doi.org/10.5194/essd-2024-131
http://dx.doi.org/10.5194/essd-2024-131
http://dx.doi.org/10.1190/geo2014-0323.1
http://dx.doi.org/10.1190/geo2014-0323.1
http://dx.doi.org/10.1190/geo2014-0323.1
http://dx.doi.org/10.1190/geo2018-0646.1
http://dx.doi.org/10.1190/geo2018-0646.1
http://dx.doi.org/10.1190/geo2018-0646.1
http://dx.doi.org/10.1190/geo2018-0646.1
http://dx.doi.org/10.1190/geo2018-0668.1
http://dx.doi.org/10.1190/geo2018-0668.1
http://dx.doi.org/10.1190/geo2018-0668.1

