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ABSTRACT

Seismic facies characterization plays a key role in hydrocarbon
exploration and development. The existing unsupervised methods
are mostly waveform-based and involve multiple steps. We have
developed a method to leverage unsupervised contrastive learning
to automatically analyze seismic facies. To obtain a stable result,
we use 3D seismic cubes instead of seismic traces or their variants
as inputs of networks to improve lateral consistency. In addition,
we treat seismic attributes as geologic constraints and feed them
into the network along with the seismic cubes. These different
seismic and multiattribute cubes from the same position are

regarded as positive pairs and the cubes from a different position
are treated as negative pairs. A contrastive learning framework is
used to maximize the similarities of positive pairs and minimize
the similarities of negative pairs. In this way, we can enforce the
samples with similar features to get close while pushing the sam-
ples with different features to be separated in the space where we
make the seismic facies clustering. This contrastive learning
framework is a one-stage, end-to-end, and unsupervised fashion
without any manual labels. We have determined the effectiveness
of this method by using it to a turbidite channel system in the
Canterbury Basin, offshore New Zealand. The obtained facies
map is continuous, resulting in a stable and reliable classification.

INTRODUCTION

Seismic facies can be defined as groups of seismic reflections
whose patterns (such as amplitude, frequency, and geometry) are dif-
ferent from those of adjacent groups (West et al., 2002), and their
characterization plays a key role in hydrocarbon exploration and de-
velopment. However, the characterization of seismic facies still
heavily relies on experienced interpreters and needs laborious manual
work. Moreover, the growth of seismic data significantly increases
the difficulty of manual interpretation. It is necessary to develop some
automatic seismic interpretation tools to address these issues.
During the past few decades, many machine-learning algorithms

have been proposed to help interpreters automatically analyze seis-
mic facies, such as k-means (Barnes and Laughlin, 2002; Sabeti and
Javaherian, 2009), the self-organizing map (SOM) (de Matos et al.,
2007; Zhao et al., 2015, 2016), generative topographic mapping

(Wallet et al., 2009; Roy et al., 2014), and support vector machine
(Kuzma and Rector, 2005; Zhao et al., 2005; Zhang et al., 2015).
Although these conventional machine-learning methods reduce the
heavy workload, intervention from interpreters is still necessary to
obtain an acceptable result (Zhang et al., 2021).
In recent years, deep learning has achieved large success in many

computer vision tasks including pattern recognition (Ronneberger
et al., 2015; Chen et al., 2017) and deep clustering (Chang et al.,
2017; Caron et al., 2018; Li et al., 2021b). Due to the powerful
ability for learning features and representation, it soon attracted
great attention from seismic interpreters, who have proposed many
methods based on deep learning to automatically characterize
seismic facies. These methods can generally be divided into three
categories: supervised learning, semisupervised learning, and unsu-
pervised learning.

Manuscript received by the Editor 15 March 2022; revised manuscript received 11 May 2022; published ahead of production 1 August 2022; published online
3 October 2022.

1University of Science and Technology of China, School of Earth and Space Sciences, Laboratory of Seismology and Physics of Earth’s Interior, Hefei, China
and University of Science and Technology of China, Mengcheng National Geophysical Observatory, Hefei, China. E-mail: lijintao@mail.ustc.edu.cn; xinmwu@
ustc.edu.cn (corresponding author); sunxiaoming_cupb@sina.com.

2PetroChina Hangzhou Research Institute of Geology, Hangzhou, China. E-mail: yeym_hz@163.com; yangc_hz@petrochina.com.cn.
3Xi’an University of Posts and Telecommunications, Xi’an, China. E-mail: huzhanxuan@mail.nwpu.edu.cn.
4Schlumberger, Houston, Texas, USA. E-mail: tao.zhao@alumni.ou.edu.
© 2023 Society of Exploration Geophysicists. All rights reserved.

WA81

GEOPHYSICS, VOL. 88, NO. 1 (JANUARY-FEBRUARY 2023); P. WA81–WA89, 10 FIGS.
10.1190/GEO2022-0148.1

D
ow

nl
oa

de
d 

10
/0

7/
22

 to
 2

3.
22

8.
11

3.
13

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

S
E

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:1

0.
11

90
/g

eo
20

22
-0

14
8.

1

http://crossmark.crossref.org/dialog/?doi=10.1190%2Fgeo2022-0148.1&domain=pdf&date_stamp=2022-10-03


The first group of methods (Wrona et al., 2018; Zhang et al.,
2019; 2021; Liu et al., 2020; Kaur et al., 2021; Li et al., 2021a),
supervised learning, usually need large amounts of training seismic
data and corresponding exact seismic facies labels, and then feed
them into a neural network to train until the network converges.
These supervised methods can achieve high accuracy; however,
they still face two serious challenges. First, the well-interpreted seis-
mic facies labels are insufficient, or even lacking, because it can be
highly time-consuming and subjective to manually prepare labels.
Second, most of the supervised methods are typically trained with
data sets from a single survey and, therefore, may not generalize
well when applied to data in different regions. Some researchers
proposed semisupervised learning methods (Qi et al., 2016), which
deal with the large amounts of unlabeled seismic data in combina-
tion with typically smaller sets of labeled data (van Engelen and
Hoos, 2020).
Unsupervised methods attract significant amounts of attention

when dealing with the problem of seismic facies interpretation be-
cause they do not need any manual labels. Some researchers use an
autoencoder network to extract discriminant and invariant features
from unlabeled data, and then leverage conventional machine learn-
ing methods (such as k-means and SOM) to classify the extracted
features (Qian et al., 2018; Li et al., 2019; Puzyrev and Elders,
2020). Some other methods combine the feature exaction and clus-
tering to simultaneously optimize the two steps of feature extraction
and clustering (Duan et al., 2019; Zhu et al., 2022). However, these
methods still require multiple steps, which often include a pretrain
step. In addition, most of these methods are based on seismic traces
or their variants which lack the horizontal consistency constraints,
resulting in a discontinuous and noise classification.
Recently, contrastive learning has emerged as a promising para-

digm of unsupervised learning to achieve state-of-the-art performance

in some computer vision tasks. In contrastive learning, positive pairs
from the same images with different augmentations would be en-
forced closer, whereas negative pairs from the different images are
supposed to be pushed away (Chen et al., 2020; He et al., 2020; Wang
et al., 2021). In this paper, we leverage a contrastive learning frame-
work based on Li et al. (2021b) to automatically analyze seismic fa-
cies. This method is a one-stage and end-to-end single process fashion
without any manual label. Unlike the previously mentioned methods,
we extract 3D seismic cubes instead of seismic traces or their variants
to form training data set, which can impose lateral consistency and
help facies map to be more stable and continuous. In addition, as
one of the important conventional interpretation methods, seismic
attributes are regarded as geologic constraints and fed into the network
along with seismic data (Zhao et al., 2017). By replacing data aug-
mentations with seismic attributes, the two types of inputs can be
properly processed by the contrastive learning framework, which
maximizes the similarities of the seismic and multiattribute cubes
from the same position and minimizes the similarities of the cubes
from different positions. We apply the proposed method to seismic
data that contain a turbidite system with a special focus on a channel
feature, acquired over the Canterbury Basin, offshore New Zealand.
We obtain a continuous and stable result that is consistent with pre-
vious interpretations by Zhao et al. (2016). To summarize, the major
point of our work is as follows:

1) We leverage a one-stage and end-to-end contrastive learning
fashion without any manual labels to solve seismic facies in-
terpretation problems.

2) To improve lateral consistency, we extract 3D seismic cubes
as training data set, which can avoid a discontinuous and
noise result.

3) We use seismic attributes as geologic constraints in the
proposed method.

We begin our paper by discussing the geologic
setting and the workflow to prepare training data
sets. Second, we introduce the contrastive learn-
ing framework used in this work. Then, we apply
the network to the turbidite system. Finally, we
conclude our work.

GEOLOGIC SETTING AND
TRAINING DATA

We first introduce the basic geologic setting,
i.e., the turbidite system within a field seismic
volume used in this paper. Based on this turbidite
system, we generate suitable training data sets for
our unsupervised method.

Geologic setting

The study area lies in the Canterbury Basin,
offshore New Zealand (Figure 1). This turbidite
system is situated on the transition zone of
continental slope and rise and filled with plentiful
paleocanyons and turbidite deposits of Cretaceous
and Tertiary ages. The sedimentary process is con-
trolled by a single tectonically driven transgres-
sive-regressive cycle (Zhao et al., 2015, 2016).
A 3D seismic survey called Waka-3D was

Figure 1. This map shows the location of the turbidite channel system. The black rec-
tangle denotes the boundary of theWaka 3D data set wherein the red rectangle shows the
area used in this study. The color means the elevation of the ocean basin (modified from
Mitchell and Neil, 2012; Zhao et al., 2015).
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acquired over this area and was made public by New Zealand
Petroleum and Minerals. The black rectangle shown in Figure 1 de-
notes the whole survey of the data set. Several studies have explored
the survey with abundant channels (Zhao et al., 2015, 2016; Wallet
and Hardisty, 2019), while they only focus on one part of the survey
(denotes by the red rectangle in Figure 1).
Zhao et al. (2016) interpret the Miocene turbidite system through

the phantom horizon of the seismic volume shown in Figure 2. A
2D view of this horizon is shown in Figure 3. The white arrows
indicate main slope multistory channels that converge and form
a lobate feature downstream. The black arrow indicates several
sinuous channel complexes positioned around the main channels,
and some channels are difficult to identify on the seismic amplitude
horizon slice. These channels (in small and large scales) are prob-
ably mud-filled. The blue arrows are identified as some older, prob-
ably sand-filled channels that show high amplitude in seismic data
and developed earlier than the mud-filled channels. Therefore, these
earlier sand-filled channels are cut through and covered by the later
deposited mud-filled channels. Then, the red arrows indicate pos-
sible slope fans, which are widely distributed in this turbidite sys-
tem, and the orange arrow is identified as some messy turbidite
current or slump deposits.

Training data

Most of the existing unsupervised methods for automatic seismic
facies analysis are only based on seismic waveforms or their var-
iants and abandon seismic attributes. However, the characteristics of
an individual seismic trace are too simple for networks to extract
effective features. Meanwhile, single seismic trace-based operations
lack lateral consistency. Both of these facts bring challenges to sub-
sequent clustering. To tackle this issue, we first prepare training
data sets by extracting 3D cubes (centered at the positions to be
classified) of seismic amplitude and other attributes. We then use
the seismic amplitude cubes and the corresponding attribute cubes
as the inputs of the network in which the strategy of contrastive
learning is used to analyze the abundant information of these

two types of inputs simultaneously (for the details of contrastive
learning, see the next section).
Seismic attributes are calculated from seismic data, and they have

been widely used in seismic facies analysis for the past few decades
(La Marca and Bedle, 2022). A good seismic attribute is directly
sensitive to the desired geologic feature of interest, which helps
us to interpret seismic facies (Chopra and Marfurt, 2007). In other
words, by properly choosing seismic attributes as inputs of neural
networks, we are able to introduce prior geologic constraints (those
highlighted by the attributes) into the networks.
To discriminate the facies of interest, we must choose suitable

and independent seismic attributes without redundancy (Zhao et al.,
2015). Here, we follow Zhao et al. (2016) and Wallet and Hardisty
(2019) and choose four types of attributes including coherent en-
ergy (Figure 4a), peak spectral magnitude (Figure 4b), peak spectral
frequency (Figure 4c), and curvedness (Figure 4d). The coherent
energy is sensitive to the amplitude response. Peak spectral fre-
quency and peak spectral magnitude highlight the variation of
the seismic response that can be used to distinguish thick channels
from thin ones and overbank deposits. Curvedness defines the mag-
nitude of reflector structural or stratigraphic deformation (Zhao
et al., 2016; Wallet and Hardisty, 2019).
In preparing training data sets, we first normalize the seismic data

and the four seismic attributes by the mean and standard deviation
of each data as follows:

xnorm ¼ x − xmean

xstd
: (1)

Figure 2. A 3D view of the seismic horizon used by Zhao et al.
(2016).

Figure 3. The seismic amplitude horizon slice. Interpreted by Zhao
et al. (2016), the white arrows indicate two main stacked channels
and the black arrow indicates several sinuous channel complexes.
The blue arrows are identified as older sand-filled channels that cut
through by the stacked channels. The red arrows indicate widely
distributed slope fans and the orange arrow indicates turbidite cur-
rent or slump deposits.

Seismic facies characterization WA83
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This normalization would be helpful for the training and prediction
because the range of values varies greatly from one data set to an-
other. Assuming that the size of the target slice is n1 × n2 (i.e., in-
line × crossline), we extract small 3D seismic and attributes centered
at the samples on this slice to form training data set, following the
three steps, as shown in Figure 5. (1) Vertically selecting a suitable
timewindow (window size is t) centered on the target horizon seismic
slice, then, we can obtain a volume of size n1 × n2 × t. This step is to
flatten the target horizon slice. (2) We cut a cube of size w × w × t
by using a w × w horizontal square window to the volume obtained
in step 1 and the window centers at each point of the target slice.
Note that we discard the points near the boundaries and can obtain
ðn1 − wÞ × ðn2 − wÞ cubes. (3) A seismic cube and an attribute cube
extracted from the same position form a training sample pair, and the
attribute cube can be any of four seismic attributes. Thus, we can
obtain 4 × ðn1 − wÞ × ðn2 − wÞ pairs of cubes to generate training
data sets altogether.
In this work, the size of the target slice is 576 × 1767, the time

window size is nine, and the horizontal square window size is
17 × 17. In fact, we do not need to feed all training pairs to the
network, and only using 1=16 of all sample pairs can not only
achieve almost the same performance as using all the data but also

greatly reduce graphics processing unit memory and computational
costs during the training.

CONTRASTIVE LEARNING FOR SEISMIC FACIES
CHARACTERIZATION

Based on the prepared training data sets without any labeling, we
present a workflow of seismic facies characterization by using an
unsupervised learning method inspired by the idea of contrastive
learning (Li et al., 2021b).
The basic idea of contrastive learning is to learn an embedding

space where the similarities of different augmentations from the
same image are maximized, and the similarities of different images
are minimized (Wang et al., 2021). They usually use a siamese
network to learn the feature matrix of data pairs constructed
through a variety of data augmentations (Li et al., 2021b), and then
update the network by minimizing contrastive loss functions.
However, using data augmentations to construct pairs shows poor
performance in seismic facies analysis because the seismic cubes
are too small compared with nature images. Fortunately, a seismic
attribute can be regarded as a special augmentation that also

Figure 4. The four seismic attributes used in this study. (a) Coherent energy, (b) peak spectral magnitude, (c) peak spectral frequency, and
(d) curvedness.
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belongs to a transformation of seismic data, and we can replace
data augmentations with different attributes.

Network

The architecture used in our work is shown in Figure 6, which
consists of two parts: a shared encoder followed by two separate
projection heads. Given the two inputs of seismic cubes Ia and mul-
tiattribute cubes Ib, the encoder network f first maps them to a
common feature space, i.e., ha ¼ fðIaÞ and hb ¼ fðIbÞ. Then,
the two multilayer perceptron (MLP) heads σ1 and σ2 are used
to, respectively, project the extracted features ha and hb into two
different embedding space. Specifically, σ1 is a cluster contrastive
head, which projects fha; hbg as two probability matrices
fYa; Ybg ∈ RN×C that directly reveal the clustering result of inputs,
where N denotes the batch size and C denotes the number of clus-

ters; σ2 is an instance contrastive head, which projects fha; hbg as
two new feature matrices fZa; Zbg ∈ RN×M and plays a role of pro-
moting the network to learn better features, where M is the feature
length of each instance. We experimentally validate it in the “Abla-
tion study” section.
In this work, we adopt 2D ResNet18 (He et al., 2016) as our

encoder network. The MLPs consist of a fully connected layer
and a rectified linear unit activation followed by another fully con-
nected layer. The MLP of the cluster contrastive head is followed by
an additional softmax function to produce the output whose ith
element represents the probability belonging to cluster i. We con-
sider the time slices of seismic cubes as t channels that are input to
the 2D convolutional network. In the application step, we input only
the seismic cubes to the trained network and apply an argmax op-
eration to the feature matrix of the cluster contrastive head to com-
pute clustering results of seismic facies.

Figure 6. The framework used in this work.

Figure 5. The workflow to generate training data.
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Loss function

For a feature matrix extracted from the network, its rows can be
regarded as the cluster assigned probabilities of instances, and its col-
umns can be interpreted as the cluster distributions over instances. We
use two contrastive loss functions to maximize the similarities of pos-
itive pairs while minimizing the similarities of negative pairs over the
row and the column space, respectively. We treat the cubes from the
same position as positive pairs and the cubes from a different position
as negative pairs. Therefore, given a batch of size N, the total number
of samples is 2N. Each sample can form one positive pair with the
corresponding seismic or attributes cube, and 2N − 2 negative pairs
with other cubes. We use cosine distance to measure the pair-wise
similarity.
For the instance contrastive head, we have its feature matrices

Za; Zb ∈ RN×M , and we use zai to denote the ith row of feature ma-
trix Za. We can define the loss of a seismic cube as

la
i ¼−log

expðsðzai ;zbi Þ=τIÞP
N
j¼1½expðsðzai ;zaj Þ=τIÞþexpðsðzai ;zbj Þ=τIÞ�

; (2)

where τI is the temperature parameter, sðzai ; zbj Þ means the cosine
similarity between zai and zbj , and the loss of an attribute cube lb

i is
defined in the same way. In this formula, the numerator denotes the

similarity of the positive pair, and the denominator denotes the total
similarities of all pairs which could be approximated as the simi-
larities of negative pairs when the batch size is large. This loss will
decrease when the positive pairs are attracted and the negative pairs
are separated. Thus, the instance contrastive loss over every instance
can be written as

Linstance ¼
1

2N

XN

i¼1

ðla
i þ lb

i Þ: (3)

Note that the feature matrices produced in the cluster contrastive
head Ya; Yb ∈ RN×C, each row of Ya; Yb should tend to be one-hot,
and the columns can be interpreted as the cluster distributions over
instances. Therefore, all columns of each matrix should differ from
each other and the similarity of the columns Ya

i and Yb
i should be

maximized. In other words, given a column Ya
i , it can form one

positive pair with Yb
i and 2C − 2 negative pairs with other columns.

In this sense, similar to la
i , the cluster contrastive loss for a seismic

cube can be defined as

l̂a
i ¼− log

expðsðyai ;ybi Þ=τCÞP
C
j¼1½expðsðyai ;yaj Þ=τCÞþ expðsðyai ;ybj Þ=τCÞ�

;

(4)

Figure 8. Classification of the turbidite channel
system based on contrastive learning. (a) The re-
sult of our method, each cluster is assigned a color
and (b) the result produced by a VAE network fol-
lowed by k-means. The sobel-filter similarity
(Chopra et al., 2014; Phillips and Fomel, 2017)
is overlaid in black to show the boundaries.

Figure 7. Training record of (a) the instance con-
trastive loss, (b) the cluster contrastive loss, and
(c) the total loss.
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where τC is a temperature parameter. The cluster contrastive loss
over all columns is defined as

Lcluster ¼
1

2C

XC

i¼1

ðl̂a
i þ l̂b

i Þ −HðYÞ; (5)

where HðYÞ is the entropy of cluster assignment probabilities
within a batch to avoid the trivial solution.
Therefore, the total loss is defined as

L ¼ Linstance þ Lcluster: (6)

These two parts of loss simultaneously optimize the network in
training.

RESULT AND ABLATION STUDY

After constructing the whole workflow, we use the training pairs
to train the network until it converges. Then, we compute a seismic
facies map by feeding all of the seismic cubes, one for each pixel on
the horizon slice, into the trained network. In addition, we discuss
some ablation experiments to further understand our work.

Result

We train our model with an Adam optimizer (Kingma and Ba,
2014) over 200 epochs. The learning rate is initialized to 3 × 10−4

without any decay. Contrastive learning usually requires a large batch
size to cover a rich set of negative samples to achieve good perfor-
mance. Benefiting from the small size of cubes, we can set the batch
size to 1024. As mentioned previously, we use only approximately
250,000 cube pairs (i.e., 1=16 of all possible pairs) to train our net-
work. The number of seismic facies classes is set to six, which is
larger than the five classes shown in Figure 2. In fact, the exact num-
ber of facies classes is unknown because some facies are few in the
turbidite system but they do exist. Thus, we only focus on the main
seismic facies, especially channel facies and set a slightly larger num-
ber. The inability to determine the number of facies classes is a limi-
tation of our method and most of the unsupervised learning methods.
Finally, we recorded the values of the loss functions at each epoch
shown in Figure 7. The two loss function curves converge quickly at
approximately 100 epochs. The whole training process took up only
3G memory of NVIDIA Tesla V100 and was completed in 4 h.
The classification result of the turbidite channel system is shown in

Figure 8a where the sobel-filter similarity is overlaid in black to high-
light the boundaries. In Figure 8, each pixel in the seismic horizon
slice is painted with the same color as the class to which it belongs.
The first class marked in shallow orange is identified as the mud-filled
channel. Two main slope channels (white arrows) are classified as the
first class that converge downstream. The second class (light green)
denotes the sand-filled channels. The upper blue arrow denotes the
older and probably sand-filled channels within the multistoried
stacked channel. The lower blue arrow also indicates an older, high
amplitude, sand-filled channel that developed earlier than the mud-
filled cutting through it. These two classes show clear lineaments
along the sinuous channels. Most of the sinuous channel complexes
are classified as mud-filled channels (black arrow), but some are still
marked in light green, i.e., sand-filled. The third class characterized by
reddish-brown denotes the slope fans, which is continuous and wide-

spread in the northeast and southwest (red arrows). The fourth and
fifth classes are discontinuous and widespread in the northwest
and the area between the two main slope channels. We identify them
as some messy turbidite current or slump deposits. Finally, the sixth
class characterized by lemon green is few but widely distributed in the
whole turbidite system. This class also is probably turbidite current or
some unknown facies.
We then compared the autoencoder-based method. We first fol-

low the operation of Zhu et al. (2022) and exact a seismic trace and
copy it 17 times to form a small 2D vertical seismic section where
we apply 2D convolution layers. Then, we feed the seismic sections
to a variational autoencoder (VAE) network and set the number of
latent features as six. Finally, we obtain the facies map shown in
Figure 8b by inputting the latent features into k-means. The facies
map is noise and discontinuous, and many points are assigned in-
correct clusters.
Figure 9 shows the classification results of two previous works by

Zhao et al. (2016) and Wallet and Hardisty (2019). Zhao et al. (2016)
leverage SOM to obtain a seismic facies map shown in Figure 9a
where they paint each point with a color in a 2D colorbar. Thus, this
method does not explicitly specify the exact number of facies classes,
and it implicitly determines whether two points are in the same class
by color difference. Wallet and Hardisty (2019) feed the two SOM
latent axes produced by Zhao et al. (2016) to a Gaussian mixture
model (GMM) to achieve a seismic facies map (Figure 9b), and they
set the number of seismic facies as seven. Compared with the two
previous works, our result is generally consistent with their results.
In addition, our result is more continuous and stable, especially in
the slope fans (the two red arrows). However, some areas still fall into
the incorrect classes in our result; for instance, the sinuous channel
complexes positioned near the right main channel (the red rectangle)
are assigned turbidite current or slump deposits (blue) instead of the
two kinds of the channel (shallow orange or light green).

Ablation study

Three ablation experiments are carried out to better understand
the importance of using 3D seismic cubes, seismic attributes, and
the instance contrastive head.
We first evaluate the importance of 3D seismic cubes by replacing

them with waveform-based sections (including seismic and corre-
sponding attributes) and 2D seismic slices to train our network.

Figure 9. Previous works using (a) SOM (Zhao et al., 2016) and
(b) GMM (Wallet and Hardisty, 2019). This figure is from Wallet
and Hardisty (2019).
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We follow the aforementioned VAE-based method and extract trace-
based sections as inputs, i.e., the small 2D vertical seismic (or attrib-
utes) sections. The result is shown in Figure 10a. It is almost as dis-
continuous and noise as the VAE-based method (Figure 8b), but more
reasonable such as the sinuous channel complexes and the slope fans
in the northeast. Then, we extract 2D slices with the size of 17 × 17 as
inputs, and the result is shown in Figure 10b. This facies map is more
continuous than Figure 10b, while the classification result is still in-
accurate.
Seismic attributes also play a key role in our method. To dem-

onstrate this point, we replace the seismic attributes with sample
augmentations to construct training pairs in the ablation experiment.
Due to the size of cubes being too small, we only implement some
simple data augmentations including flipping and rotating.
Figure 10c exhibits the result of this experiment. This result is more
continuous and stable than Figure 10a because we use 3D cubes
instead of traces, while it still shows more incorrect classifications
than the result (Figure 8a) with attributes.
Finally, we remove the instance contrastive head and only keep

the cluster contrastive head. The result is shown in Figure 10d. This
result is more continuous than Figure 10a and more accurate than
Figure 10c. However, many areas are still assigned the incorrect clus-
ters such as the slope fans in the northeast, the sinuous channel com-
plexes in the southeast, and the turbidite current in the northwest.

CONCLUSION

We have discussed a workflow based on contrastive learning for
automatic seismic facies characterization. This method is a one-
stage, end-to-end, and unsupervised fashion without any manual
label. Unlike the mostly existing unsupervised works, we exact
3D seismic cubes instead of seismic traces or their variants as
the network inputs to impose lateral consistency and avoid discon-
tinuous and noise results. In addition, we feed both seismic and
seismic attributes into the network rather than only one of them
and the seismic attributes can be regarded as geologic constraints
for networks. The two types of inputs are processed by a contrastive

learning framework, which maximizes the similarities of different
seismic and attributes cubes from the same position and minimizes
the cubes from a different position. This framework contains two
contrastive heads including the basic cluster contrastive head and
the other instance contrastive head which are trained by two con-
trastive loss functions, respectively. Finally, we have demonstrated
the effectiveness of the method by applying it to a turbidite system
in Canterbury Basin, offshore New Zealand, and the three ablation
studies help us to understand the effectiveness of our method.
Some limitations remain in our method. One is that the cluster

number cannot be automatically determined and must be manually
specified. Moreover, the result leaves room for improvement, such
as the sinuous channel complexes are unreasonably classified near
the main channel. For future work, the result may be improved by
leveraging transformer instead of convolutional neural network-
based contrastive learning methods. In addition, we plan to take
location information into the network because two cubes should
be similar and belong to the same class if they are only one or
two pixels shifted.
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Figure 10. The result of ablation experiments (a) using seismic traces instead of 3D seismic cubes, (b) using 2D slices instead of 3D seismic
cubes, (c) using image augmentations instead of seismic attributes, and (d) discard instance contrastive head. The sobel-filter similarity is
overlaid in black to show the boundaries.
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