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Abstract— Reverse time migration (RTM) is a technique used1

to obtain high-resolution images of underground reflectors; how-2

ever, this method is computationally intensive when dealing with3

large amounts of seismic data. Multisource RTM can significantly4

reduce the computational cost by processing multiple shots5

simultaneously. However, multisource-based methods frequently6

result in crosstalk artifacts in the migrated images, causing7

serious interference in the imaging signals. Plane-wave migration,8

as a mainstream multisource method, can yield migrated images9

with plane waves in different angles by implementing phase10

encoding of the source and receiver wavefields; however, this11

method frequently requires a trade-off between computational12

efficiency and imaging quality. We propose a method based on13

deep learning for removing crosstalk artifacts and enhancing14

the image quality of plane-wave migration images. We designed15

a convolutional neural network that accepts an input of seven16

plane-wave images at different angles and outputs a clear and17

enhanced image. We built over 500 1024 × 256 velocity models,18

and employed each of them using plane-wave migration to19

produce raw images at 0◦, ±10◦, ±20◦, and ±30◦ as input of the20

network. Labels are high-resolution images computed from the21

corresponding reflectivity models by convolving with a Ricker22

wavelet. Random sub-images with a size of 512 × 128 were23

used for training the network. Numerical examples demonstrated24

the effectiveness of the trained network in crosstalk removal25

and imaging enhancement. The proposed method is superior to26

both the conventional RTM and plane-wave RTM (PWRTM) in27

imaging resolution. Moreover, the proposed method requires only28

seven migrations, significantly improving the computational effi-29

ciency. In the numerical examples, the processing time required30

by our method was approximately 1.6% and 10% of that required31

by RTM and PWRTM, respectively.32

Index Terms— Computational efficiency, deep learning, high-33

resolution imaging, seismic waves.34
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I. INTRODUCTION 35

SEISMIC exploration is a geophysical method to infer 36

the geometries and properties of underground rocks 37

by analyzing the propagation pattern of seismic waves 38

generated by artificial seismic sources at the surface. This 39

method is regarded as one of the most effective methods 40

to explore oil and gas resources. Complex underground 41

structural imaging has become particularly valuable in 42

recent years with increasing resource extraction; therefore, 43

acquiring high-quality seismic data and developing accurate 44

imaging algorithms has gained importance. Although wide- 45

and full-azimuth acquisition techniques can yield adequate 46

subsurface reflection signals, these massive data also entail a 47

huge computational overhead [1], [2]. Seismic migration is an 48

imaging technique that returns the reflections or diffractions 49

from data to their true subsurface locations, constructing a 50

high-resolution image of underground structures [3]. Several 51

migration methods have been developed and applied in earlier 52

studies [4], [5], for example, Kirchhoff migration [6], [7], [8] 53

and Gaussian-beam migration [9], [10] based on ray theory, 54

generalized screen propagators [11], [12] based on one-way 55

wave equation, and reverse time migration (RTM) [13] based 56

on two-way wave equation. 57

RTM, one of the most accurate migration methods, uti- 58

lizes the full seismic wavefields and is capable of han- 59

dling arbitrarily complex media with amplitude fidelity [5], 60

[14]. Fig. 1 illustrates the workflow for executing RTM. 61

We start by extracting the seismic records as common-shot 62

gathers and preparing a migration velocity model. Sub- 63

sequently, we execute the shot loop. For each shot, 64

we need to forward-extrapolate the source wavefield and 65

backward-extrapolate the receiver wavefield by loading the 66

source and corresponding data, respectively. The zero-time 67

lag cross correlation imaging condition applied on the two 68

wavefields generates one single-shot image. After the shot 69

loop is finished, all the single-shot images are stacked to 70

obtain the final imaging result. However, in this process, the 71

propagation of the wavefields is extremely time-consuming. 72

Assuming N sources, a total of N times of migration is 73

required, corresponding to 2N times of wavefields propa- 74

gation, which includes N times each of both forward and 75

backward wavefields propagation. The computational burden 76

increases significantly with an increasing number of shots. 77

To reduce the computational cost of RTM, several multi- 78

source RTM methods have been proposed and developed [15], 79

[16], [17], [18], [19], [20]. Unlike conventional RTM that 80

deals with each shot separately, multisource migration methods 81
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Fig. 1. RTM execution workflow. Here i denotes the shot number, t denotes
the time step, and T is the total time steps. pS(x, z, i, t) and pR(x, z, i, t)
represent the source and receiver wavefields of the i th source at time step t ,
respectively.

focus on forming a virtual source and the corresponding82

virtual shot gather by weighted summing multiple shots and83

their corresponding shot gathers simultaneously. The virtual84

shot and its corresponding shot gather are migrated to gen-85

erate an image. Multisource RTM reduces the number of86

migrations significantly, thus improving computational effi-87

ciency. However, a serious drawback of these multisource88

methods is that mismatched sources and shot gathers produce89

crosstalk artifacts under nonlinear imaging conditions [18],90

severely hurting the imaging quality. The study of multisource91

RTM in suppressing crosstalk noise has two main tracks.92

One is to design different coding functions, and the other93

is to develop several denoising or smoothing methods as a94

post-stack denoising step or as a constraining operator in95

least-square reverse time migration (LSRTM).96

For the first research track, such encoding methods are pri-97

marily classified into phase and amplitude encoding. Numer-98

ous scientists have investigated phase-coding methods [19],99

[21], [22], [23], wherein they concentrated on shifting the100

crosstalk positions in the migrated images to suppress them.101

To date, several types of phase-coding methods have been102

developed, such as plane-wave encoding, random phase encod-103

ing, modulation encoding, and harmonic encoding. Among104

them, the plane-wave RTM (PWRTM) is the most widely105

deployed multisource migration method. In PWRTM, different106

linear time delays imposed on the source and the receiver107

wavefields yield planar wavefields with different angles. The108

cross correlation imaging condition is placed on all the angu-109

lar planar wavefields to generate the corresponding single-110

angle images, which are called common-angle image gathers111

(CAIGs). PWRTM images are created by stacking the CAIGs.112

The time delay and the number of angles affect the compu-113

tational efficiency. A few research works based on amplitude114

encoding [16], [17]. In these methods, the imaging results of115

several different encoding functions are stacked to accomplish 116

signal enhancement and noise suppression [16]. Jia et al. [24] 117

presented a method for simultaneously encoding the amplitude 118

and phase. This technique involves fitting the wavefield of 119

a virtual super-shot in the time domain by encoding the 120

amplitude and phase of the wavefields excited by multiple 121

sources at the surface. 122

For the second research track in suppressing crosstalk 123

noise, a series of methods have been proposed and devel- 124

oped, especially in terms of LSRTM. Xue et al. [25] intro- 125

duced shaping regularization as a structure-oriented smoothing 126

operator to suppress crosstalk noise in simultaneous-source 127

data and incomplete data. For further improving the imaging 128

quality of multisource LSRTM, Chen et al. [26] developed 129

a local low-rank constrained LSRTM by applying a local 130

singular spectrum analysis operator to denoising the crosstalk 131

and preserving the steeply dip-angle events. Chen et al. [27] 132

(2022) employed a low-rank decomposition operator for 133

LSRTM of simultaneous-source data and incomplete data 134

and achieved crosstalk noise suppression and edge pre- 135

serving. Unlike the regularization-based approach described 136

above, Zhang et al. [28] (2019) applied an excitation ampli- 137

tude imaging condition for LSRTM to achieve favorable 138

suppression of crosstalk noise. A dictionary learning approach 139

was proposed to mute the crosstalk noise in LSRTM [29]. 140

Although multisource RTM- and LSRTM-based methods 141

have made great progress, they involve a trade-off between 142

computational efficiency and suppression of noise. There is 143

an urgent demand for a method that can guarantee a signif- 144

icant increase in computational efficiency while eliminating 145

crosstalk noise. 146

Deep learning has advanced rapidly in the field of com- 147

puter vision in recent years owing to the widespread use of 148

convolutional neural networks (CNNs). CNN-based methods 149

have progressed substantially in image classification [30], 150

segmentation [31], object detection [32], and denoising [33] 151

tasks. Compared with traditional methods, deep learning does 152

not require manually defined criteria and automatically picks 153

up the deep-level information of images. Deep learning has 154

been successfully employed for data processing and interpre- 155

tation in seismic exploration, for example, seismic data noise 156

attenuation [34], [35], [36], [37], first-arrival picking [38], 157

[39], [40], velocity model building [41], [42], [43], missing 158

seismic data reconstruction [44], impedance inversion [45], 159

[46], and seismic structural interpretation [47], [48], [49]. 160

Although, a few advances in deep learning have been reported 161

for simultaneous-source data deblending [50], [51], [52], few 162

studies used deep learning for image denoising in multisource 163

seismic migration. 164

We propose a CNN to eliminate the crosstalk in the migrated 165

images and enhance the PWRTM image quality. The input of 166

the network are CAIGs, that is, a combination of plane-wave 167

images with seven incident angles (0◦, ±10◦, ±20◦, and 168

±30◦). The input has seven channels. The desired output 169

is a clear and high-resolution image convolved from the 170

corresponding reflectivity model, and we called it ”a convolved 171

image”. The designed network architecture is a modified 172
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U-net network [53] with three parts: an encoder, decoder, and173

refinement module. The encoder learns the features of input174

noisy image gathers at different levels. The decoder restores175

the high-level feature map to the same size as that of the176

input images. The refinement module predicts a clear image.177

To generate rich training data, we began by building about 500178

2-D velocity models with different types of structures. With179

these velocity models, we placed the source and geophones180

at the surface to simulate the corresponding synthetic seismic181

records using the finite difference method. A slight smoothing182

was conducted on these velocity models, and the smoothed183

velocity models were employed for PWRTM to obtain CAIGs.184

Labels (high-resolution convolved images) were built by true185

velocity models. We defined a Laplacian pyramid-L1 loss186

function for training the network. Using the training data and187

network architecture, we trained the CNN model with the188

defined loss function. Through numerical examples, we com-189

pared the stacked images of input CAIGs (i.e., the PWRTM190

images), predicted results, and ground truths. The comparisons191

revealed that the trained model realizes crosstalk removal and192

improves the imaging resolution. In addition, we tested the193

model with complex structures and compared the results for194

a stacked image of input CAIGs (i.e., simplified PWRTM195

image with only seven angles), traditional RTM image with196

277 shots, and PWRTM image with 71 angles in terms of the197

image quality and processing time.198

II. THEORY199

A. Plane-Wave RTM200

The 2-D first-order velocity-stress equation in the acoustic201

medium is written as202 ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂vx

∂ t
= − 1

ρ

∂p

∂x
∂vz

∂ t
= − 1

ρ

∂p

∂z
∂p

∂ t
= −ρc2

(
∂vx

∂x
+ ∂vz

∂z

)
.

(1)203

Here vx and vz denote the x- and z-components of particle204

velocity, respectively; p is the pressure wavefield. ρ and205

c indicate the density and acoustic velocity of the media,206

respectively. In the conventional RTM, the source wavefield207

pS(x, z, i, t) of shot i is cross-correlated with its correspond-208

ing receiver wavefield pR(x, z, i, t), and we can obtain a209

single-shot image as follows:210

I (x, z, i) =
T∑

t=0

pS(x, z, i, t)pR(x, z, i, T − t) (2)211

where T represents the recording time. Summing all the212

single-shot images, we obtain a stacked image Isum(x, z),213

represented by214

Isum(x, z) =
N∑

i=1

I (x, z, i) (3)215

where N is the number of shots. For this method, we need216

N forward extrapolations of the source wavefield and N217

Fig. 2. Schematic of plane wave encoding. The blue octagons indicate the
original shots or shot records, and the red octagons indicate the encoding
shots or shot records.

backward extrapolations of the receiver wavefield, leading 218

to a total of 2N simulation cycles. As the number of shots 219

increases, the computational consumption of the conventional 220

RTM is enormous. 221

For the PWRTM, linear time delay encoding functions are 222

executed on the shot records to construct plane waves, and the 223

encoding functions are expressed as [15] 224

dsum(xg, t, θ) =
N∑

i=1

di(xg, t) ∗ δ(t − τi (θ)) (4) 225

where di(xg, t) and τi denote i th shot record and its corre- 226

sponding time-shift function, respectively. The time-shifted 227

shot records are stacked to obtain a plane wave record 228

dsum(xg, t, θ) with the surface incidence angle of θ . The 229

surface incidence angle θ is defined as the angle between the 230

propagation direction of the incident plane wave and the depth 231

direction (see Fig. 2). The shots and shot records are encoded 232

in the same way, and the encoding source-time function for 233

the i th shot is expressed as 234

Wi (t, θ) = f (t) ∗ δ(t − τi (θ)) (5) 235

where Wi (t, θ) denotes the encoding source-time function 236

of the i th shot, and f (t) denotes the original source-time 237

function. Fig. 2 shows the schematic of plane wave encoding. 238

The blue and the red octagons indicate the original and the 239

encoding shots, respectively. Assuming that the incidence 240

angle of the plane wave is θ , the time shift of the i th shot 241

is expressed as 242

τi(θ) = sin θ

v0
(xi − x0) (6) 243

where v0 represents the seismic velocity at surface and xi 244

represents the position of i th shot. As the incident angle θ 245

is large, the time shift τi increases. 246

In fact, the encoding functions applied to the shots and shot 247

records are equivalent to the encoding functions acting on 248

the source and receiver wavefields. The source and receiver 249

wavefields of each shot are first encoded by time delay, 250

and the encoding source and receiver wavefields of all shots 251
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are, respectively, stacked to obtain the corresponding stacked252

wavefields. The stacked source pS
sum and receiver wavefields253

pR
sum at the incident angle of θ , respectively, assume the form254 ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

pS
sum(x, z, t, θ) =

N∑
i=1

pS(x, z, i, t − τi(θ))

pR
sum(x, z, t, θ) =

N∑
i=1

pR(x, z, i, t − τi (θ)).

(7)255

Various time delay patterns form different incident-angle256

wavefields. Using the source wavefield as an example, Fig. 3257

shows a schematic for constructing a plane wave. Fig. 3(a)258

illustrates a plane wave with 0◦ incidence angle, in which case259

the plane wave does not need to perform any time delay. The260

red octagon here indicates the encoded sources. When a linear261

time delay is applied to the sources at the surface, a plane wave262

with an incidence angle of θ is formed as shown in Fig. 3(b).263

The cross correlation imaging condition is applied to the264

stacked wavefields and one plane-wave image I plane at an angle265

of θ can be obtained, expressed by266

I plane(x, z, θ) =
T∑

t=0

pS
sum(x, z, t, θ)pR

sum(x, z, T − t, θ). (8)267

Owing to the complexity of underground structures, obtaining268

a desirable migrated image from only one angle is difficult,269

and accomplishing multiple angles migration is necessary.270

Summing the multiangle plane-wave images yield a final271

stacked image, represented by272

I plane
sum (x, z) =

∑
θ

I plane(x, z, θ). (9)273

Here we set the number of incident angles θ to M . By com-274

paring the conventional (3) and PWRTM (9) methods, we find275

that the migration number of conventional RTM is the same276

as the number of shots N , while the migration number of277

plane-wave migration is equal to the number of plane-wave278

angles M . For PWRTM, the choice of plane-wave angles279

is critical, as it significantly affects imaging accuracy and280

computational efficiency.281

B. CNN Architectures282

As mentioned earlier, plane-wave migration requires a suit-283

able number of angles, i.e., the same number of migrations,284

to achieve a balance between computational consumption and285

imaging quality. It is a challenge to obtain high-accuracy286

imaging results with a small number of migrations. In addi-287

tion, (9) is a linear superposition of plane-wave migration288

images of multiple angles, and such a linear superposition289

provides limited scope for suppressing crosstalk and improving290

imaging quality. To resolve this limitation, we designed an291

end-to-end CNN architecture (Fig. 4) to denoise and enhance292

the plane-wave migrated images. The proposed architecture293

accepts CAIGs, that is, a combination of plane-wave images294

with seven incident angles (0◦, ±10◦, ±20◦, ±30◦) as input.295

The 3-D CAIG is input by channels, so the input feature maps296

are 2-D and the number of input channels is 7. The desired297

output of the network is a noise-free high-resolution image298

Fig. 3. Schematic of plane wave synthesis. (a) Plane wave at incident angle
θ = 0◦ . (b) Plane wave at incident angle θ .

convolved from the corresponding reflectivity model corre- 299

sponding to the Ricker wavelet with a dominant frequency of 300

approximately 70 Hz. The network has three potential func- 301

tions: optimal stacking of the images with multiple incidence 302

angles, crosstalk noise removal, and imaging enhancement. 303

The proposed architecture is designed by replacing the convo- 304

lutional blocks in a U-net network [53], which comprises three 305

parts: an encoder, decoder, and refinement module [54], [55]. 306

Regarding the encoder and decoder structure, the U-net can 307

help extract multiscale structural features of seismic images. 308

Several layers of ResNet-18 [56] are used to constitute the 309

encoder part. ResNet-18 comprises 18 layers of residual net 310

and can address the degradation problem of neural networks 311

with depth. A series of residual blocks are stacked to form the 312

Resnet-18. Fig. 5 illustrates a residual block, which comprises 313

two 3 × 3 convolution filters. The shortcut of the residual block 314

enables the network to learn the seismic structural features 315

easily [56]. The details of the layers or blocks used in the CNN 316

architecture are shown in Table I. When we input raw plane- 317

wave CAIGs, after two 5 × 5 convolution layers followed by 318

batch normalization and rectified linear unit (ReLU) activation 319

function, the feature map size becomes 1/2 of the input 320

image. After max pooling and four blocks (Block1–Block4) of 321

Resnet-18, the feature map size successively becomes 1/4, 1/8, 322

1/16, and 1/32 of the input. Here, each block among Block1– 323

Block4 contains two residual blocks (Fig. 5). 324

The decoder part is designed to recover the desired size 325

of the feature map from the encoder part. We used the 326

upsampling block with reference to [55], [57]. As shown in 327

Fig. 6, the upsampling block, which is somewhat similar to 328

the residual block (Fig. 5), has a shortcut. This upsampling 329

structure allows for efficient access to global information. For 330

the upsampling block, the input feature map is first bilinearly 331

interpolated to enlarge the size. The expanded-size feature 332

map is then subjected to double convolutional layers and one 333

convolutional layer, respectively. Finally, the two parts are 334

superimposed with a shortcut. Using five upsampling blocks 335

(UpBlock0-UpBlock4), the feature map size becomes 1/16, 336

1/8, 1/4, 1/2, and 1 the size of the input images, successively. 337

We concatenated different scale layers between the encoder 338

and decoder parts (dark blue arrows in Fig. 4). 339
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Fig. 4. Proposed CNN architecture. The input is noisy CAIGs of PWRTM, which is a combination of plane-wave images with seven incident angles (0◦,
±10◦ , ±20◦ , and ±30◦). The 3-D CAIG is fed into a CNN in a channel-wise fashion; the feature map is 2-D and the number of input channels is 7. The
output is a clear and enhanced image. The CNN architecture comprises encoder, decoder, and refinement parts. The yellow rectangles are the layers inside
the CNN. The size of these rectangles denotes the size of each layer’s feature maps and the numbers below them denote the number of channels for each
layer. The arrows indicate the operations between different layers.

Fig. 5. Structure of residual block.

Fig. 6. Structure of upsampling block.

Regarding the refinement part, we stacked three convolu-340

tional layers (Conv4-Conv6). Conv4 and Conv5 operate with341

a 5 × 5 convolution kernel, batch normalization, and ReLU.342

The last convolutional layer (Conv6) is a straightforward343

5 × 5 convolution kernel to obtain the final output of the344

network.345

C. Loss Functions346

We defined a loss function based on the Laplacian pyramid-347

L1 loss to train and validate the proposed network. The loss348

TABLE I

DETAILS OF THE LAYERS OR BLOCKS USED IN EACH SECTION OF THE

CNN ARCHITECTURE, INCLUDING KERNEL SIZE, SCALE, AND THE
NUMBER OF CHANNELS OF THE INPUT AND

OUTPUT FEATURE MAPS

function follows the form presented in [58]: 349

Llap =
M∑
j

22 j
∣∣(L j

(
y p

k

) − L j (yk)
∣∣ (10) 350

where L j(y p
k ) and L j(yk) represent the j th level Laplacian 351

pyramid features of the predicted and label images, respec- 352

tively. We first impose average pooling with different sizes 353

on the predicted and the label images to obtain different 354

levels Laplacian pyramid features. Then L1 losses of predicted 355

and label image features at different scales are calculated 356

separately, and these L1 losses are weighted and summed to 357

obtain the final loss. In our training process, M equaled 5, 358
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Fig. 7. Four-layer velocity model and its imaging results. (a) True velocity
model. (b) Migration velocity model. (c) CAIGs obtained with PWRTM with
71 incident angles (from −35◦ ∼ 35◦ with an interval of 1◦). (d) CSIGs
obtained using typical RTM with 277 shots. (e) PWRTM stacked image of
71 incident angles, produced by stacking the image gathers as shown in
Fig. 7(c) along the angular direction. (f) Conventional RTM stacked image
with 277 shots. (g) PWRTM stacked image of seven incident angles (−30◦ ∼
30◦ with an interval of 10◦). (h) High-resolution image convolved from
the corresponding reflectivity model using Ricker wavelet with a dominant
frequency of approximately 70 Hz.

which means that L1 loss function was conducted on images at359

five different scales. The Laplacian pyramid loss is of potential360

importance in multiscale image denoising and enhancement.361

III. EXPERIMENTS362

A. Comparison Experiment of RTM and PWRTM363

To visually compare the regular and PWRTM, we designed364

a simple velocity model with a size of 1024 × 256 and a365

grid interval of 5 m [Fig. 7(a)]. The sources and geophones366

were arranged on the surface and the seismic records were367

synthesized by seismic modeling using the finite difference368

method. We employed the first-order derivative of a Gaussian369

wavelet with a dominant frequency of 25 Hz as the source-370

time function. The number of shot gathers was set as 277 and371

shot interval as 20 m. The recording time was set as 6 s and372

time interval as 0.4 ms. The true velocity shown in Fig. 7(a)373

was smoothed to obtain a migration velocity [Fig. 7(b)]. With374

the migrated velocity model and synthetic seismic records,375

we performed regular RTM and PWRTM to obtain the imag-376

ing results. Fig. 7(c) illustrates the CAIGs obtained using377

the PWRTM (5), which has 71 angles from −35◦ to 35◦
378

with an interval of 1◦. When performing the PWRTM, the379

maximum-delayed time was set as 2.8 s; therefore, the total380

simulation time was 8.8 s, which is approximately 1.5 times381

the original record length. The time delay implies an incre-382

ment in computational effort. We stacked all 71 plane-wave383

migrated images to obtain the image shown in Fig. 7(e).384

Although this image reflects the underground structure sat-385

isfactorily and the crosstalk artifacts are well suppressed,386

it requires 71 migrations and is computationally inefficient.387

To reduce the computational burden, we selected the images 388

corresponding to −30◦ ∼ 30◦ with an interval of 10◦ for 389

the CAIGs [Fig. 7(c)], and then summed them to obtain the 390

PWRTM stacked image with seven incident angles, as shown 391

in Fig. 7(g). It is evident that although the image in Fig. 7(g) 392

can generally reveal the underground structures, it is heavily 393

affected by crosstalk artifacts. 394

Fig. 7(d) shows the common-shot image gathers (CSIGs) 395

using conventional RTM (2). For the generation of image 396

gathers shown in Fig. 7(d), 277 shots correspond to 277 cycles 397

of migration, which requires a large amount of computation 398

time. The total images of 277 shots are stacked to obtain the 399

image shown in Fig. 7(f). The imaging result is satisfactory, 400

except for the presence of low-frequency artifacts in the 401

shallow part. The required computation time for obtaining the 402

results shown in Fig. 7(e)–(g) is 4596, 29 027, and 468 s, 403

respectively. Comparing the three images in Fig. 7(e)–(g), that 404

in Fig. 7(g) requires the least computational consumption; 405

however, it suffers the greatest interference from artifacts. 406

Fig. 7(h) presents a high-resolution image derived by convolv- 407

ing the reflectivity of this model with a Ricker wavelet with 408

an approximately 70 Hz dominant frequency. The reflectivity 409

can be acquired from the true velocity model [Fig. 7(a)]. 410

The high-resolution convolved image is our expected ideal 411

image of the subsurface structure. Based on the above findings, 412

this study aimed to obtain high-quality imaging results with 413

the minimum possible computation time, and deep learning 414

provides a useful tool to help achieve this goal. 415

B. Training Datasets 416

A large amount of input data and corresponding labels 417

are essential during the training and validation of a CNN 418

model. To implement image denoising and enhancement of 419

plane-wave migration by training a CNN, we need diverse 420

plane-wave migration image gathers and corresponding tar- 421

gets, that is, high-resolution images convolved from the 422

corresponding reflectivity models. By extracting multiple 423

sub-images from a migrated image and the corresponding 424

target image, we can obtain a large amount of training data. 425

We designed a workflow to build velocity models and their 426

corresponding migrated image gathers, as shown in Fig. 8. 427

In this workflow, we first created a vast number of 2-D true 428

velocity models of size 1024 × 256. Using the velocity models, 429

we placed sources and geophones at the surface and syn- 430

thesized seismic records through finite-difference simulation. 431

Velocity models were also employed to derive the reflectivities, 432

which were then convolved with a Ricker wavelet with a 433

dominant frequency of approximately 70 Hz to produce clear 434

and high-resolution convolved images. The true velocities 435

were smoothed and were used for the plane-wave migration to 436

obtain the imaging gathers. At each iteration during training, 437

the image gathers were fed into the network, producing 438

predicted images. We calculated the residuals between the 439

predicted images and the corresponding clear images (i.e., the 440

high-resolution convolved images), and we back-propagated 441

the residuals to the network. In training, the network adjusts 442

the parameters until they meet our requirements. 443
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Fig. 8. Workflow for building training datasets.

Fig. 9. Construction of 3-D velocity models. (a) Flat model. (b) Folded
model. (c) Fault model.

Fig. 10. Marmousi velocity model. To create the velocity models, we ran-
domly extracted different regions (white rectangle boxes) of the model and
applied affine transformations on the extractions to obtain diverse structural
velocities.

1) Synthetic Velocity Models and Seismic Records: As444

shown in the workflow in Fig. 8, the formation of image gath-445

ers and labels requires velocity models and seismic records.446

The structural diversity of velocity models has a strong impact447

on the quality of output images. We used two schemes to448

automatically build different types of velocities. For the first449

scheme, we followed the work of Wu et al. [59] to create450

the velocity models. We started with 3-D flat velocity models451

[Fig. 9(a)], and then added the folding [Fig. 9(b)], and faulting452

[Fig. 9(c)]. Thus, we constructed 100 3-D velocity models453

embodying different structures. We extracted one vertical slice454

from these 3-D velocity models along the inline direction and455

obtained 100 2-D-velocity models.456

In the second scheme, we performed random extractions457

from the Marmousi velocity model [60] (Fig. 10) and con-458

ducted affine transformations on these extractions using the459

augmentor tool [61]. The affine transformations include elastic460

distortions, perspective transforms, zooms, and their combina-461

tions. 405 velocity models were created. Notably, although the462

sizes of the randomly chosen regions were not fixed, they are463

all resampled to the same size of 1024(distance) × 256(depth).464

Fig. 11 shows six typical velocity models, and we observed465

that these velocity models contain either simple or complex466

structures, such as horizontal layers, folds, and faults. The467

richness of models can help the proposed CNN perform well468

Fig. 11. Velocity models with different structures.

Fig. 12. Plane-wave image gathers corresponding to the velocity models
shown in Fig. 11, respectively. These imaging gathers have seven incidence
angles (0◦ , ±10◦ , ±20◦ , ±30◦) and are heavily disturbed by crosstalks.

at learning the image features. Using the velocity models, 469

we simulated the corresponding seismic records. The sim- 470

ulations were performed with four dominant frequencies of 471

the source wavelets: 15, 20, 25, and 30 Hz. The sources and 472

geophones were distributed on the entire surface. The number 473

of shots was 277. 474

2) Synthetic Migrated Images and High-Resolution Images 475

Convolved From the Corresponding Reflectivity Models: 476

Using the velocity models and corresponding synthetic seismic 477

records, we employ PWRTM to obtain migrated image gath- 478

ers. The smoothed velocities were used for the PWRTM (5), 479

forming CAIGs (Fig. 12). We can observe that these images 480

are interrupted by crosstalk artifacts, which even obscure the 481

true signals. 482

The true velocities were employed to obtain high-resolution 483

images convolved from the corresponding reflectivity models 484

(Fig. 13). Compared to the noisy image gathers (Fig. 12), the 485

”true” images in Fig. 13 are clear and present the underground 486

structure accurately. In terms of computational efficiency, the 487

noisy image gathers shown in Fig. 12 require only seven cycles 488
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Fig. 13. High-resolution images convolved from the reflectivity models
corresponding to the velocities depicted in Fig. 11, respectively. These
images have high quality and are free from crosstalk artifacts, as desired
for subsurface images.

Fig. 14. Loss of designed network for training and validation datasets.

of migration because of the implementation of simplified489

PWRTM with seven angles to generate the raw images.490

C. Training and Validation491

Utilizing the above-discussed method, we synthesized over492

500 datasets. We utilized approximately 80% of the datasets493

for training and the remaining for validation. To expand the494

training data, four randomly extracted data of size 512 ×495

128 were trained for each epoch of the dataset during training496

and validation of the network. We normalized the input image497

gathers along channel directions to ensure their amplitude498

consistency.499

We used the Pytorch version 1.0 [62] for the denoising500

and enhancement of seismic images. The network was trained501

using NVIDIA Tesla V100 graphics processing unit (GPU)502

with 32 GB memory. The batch size was set as 32, with an503

initial learning rate of 10−4.504

We performed training with the Adam optimizer [63] on505

these hyperparameters and normalized seismic image gathers506

to update the model parameters. We terminated the training507

process after 300 epochs of training and validation. Fig. 14508

shows the loss of the trained model, and it is visible that both509

the training and valid losses converge to small values.510

Fig. 15 the feature maps of predicted images and labels at511

five different levels, and these images reflect the features of512

different resolutions. Performing loss functions on the images513

at five levels can help the network to extract effective features514

well.515

IV. RESULTS 516

To test the trained model, we designed velocity models 517

with different structures, as shown in Fig. 16. These velocity 518

models contained horizontal layers, folds, faults, and their 519

combinations. The sampling size of the velocity models was 520

1024 × 256. With these velocity models, we employed the 521

previously mentioned approach of building training datasets to 522

obtain the corresponding plane-wave image gathers and high- 523

resolution images. For plane-wave migration, different dom- 524

inant frequencies of seismic wavelets were used to produce 525

images with varying resolutions. Allowing for responses to 526

different frequencies, the models shown in Fig. 16 were setup 527

with different dominant frequencies of wavelets, including 20, 528

25, 25, 25, 30, and 30 Hz. 529

To demonstrate the effectiveness of our method, we com- 530

pared three types of images: stacked PWRTM image (i.e., 531

stack of the input images), predicted image, and ground truth. 532

The imaging results corresponding to the velocity models 533

shown in Fig. 16 are illustrated in Fig. 17. The plane-wave 534

stacked images are displayed in the first column in Fig. 17, 535

and severe interference from crosstalk noise can be observed, 536

with low resolution and poor imaging quality. Similar to the 537

ground truths (third column in Fig. 17), the predicted images 538

(second column in Fig. 17) are free from interference from 539

crosstalk artifacts and the signals are enhanced. In addition, 540

the predicted images have high resolution and imaging quality. 541

Owing to the frequency-band limitation of the wavelets and the 542

effect of crosstalk noises, thin layers are difficult to recognize 543

in the plane-wave stacked images, whereas the same are 544

clearly visible in the high-resolution predicted images (marked 545

by red arrows in Fig. 17). Hence, the designed network 546

achieves optimal superposition of imaging gathers, suppression 547

of crosstalk artifacts, and imaging enhancement. 548

Next, used the trained network to test a model with greater 549

complexity, as illustrated in Fig. 18. Fig. 18(a) shows the 550

velocity model with a size of 1024 × 256, with dense layers 551

and steeply dipping folds and multiple faults. This complex 552

model tends to present difficulties in seismic imaging. The 553

parameters are similar to the model shown in Fig. 7 except 554

that the delay time is 3.6 s. To demonstrate the merits of the 555

trained model, we compared the predicted image [Fig. 18(f)] 556

with the high-resolution image [Fig. 18(b)] convolved from 557

the corresponding reflectivity model, PWRTM stacked image 558

[Fig. 18(c)], traditional RTM stacked image [Fig. 18(d)], 559

and stacked image of input image gathers [Fig. 18(e)]. The 560

PWRTM stacked image shown in Fig. 18c was produced by 561

summing plane-wave images at 71 angles (from −35◦ ∼ 35◦
562

with an interval of 2◦), which requires 71 migrations. The 563

RTM stacked image exhibited in Fig. 18(d) was generated 564

by summing single-shot images of 277 shots, which requires 565

277 migrations. Both these types of stacked images [Fig. 18(c) 566

and (d)] allow for clear imaging of subsurface structures with- 567

out crosstalk artifacts. However, they are limited in resolution 568

and insensitive to fine layers owing to the influence of wavelet 569

frequencies [red arrows in Fig. 18(c) and (d)]. The plane-wave 570

CAIGs of seven angles (from −30◦ ∼ 30◦ with an interval of 571

10◦) were fed into the network to obtain the predicted image 572

shown in [Fig. 18(f)]. The stacked image of the seven input 573
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Fig. 15. Feature maps of predicted images and labels at different levels.

Fig. 16. Examples of velocity models with different structures for testing
the trained model.

image gathers is shown in Fig. 18(e). The image in Fig. 18(e)574

is heavily affected by crosstalk noise and has poor imaging575

quality. Similar to the ground truth depicted in Fig. 18(b), the576

predicted image [Fig. 18(f)] eliminates crosstalk artifacts from577

the input image gathers and improves the imaging resolution578

for high-quality imaging of subsurface fine structures.579

We analyze the wavenumber components by trans-580

forming the imaging results in the spatial domain in581

Fig. 18(c), (d), and (f) to the wavenumber domain via582

the 2-D Fourier transform. Fig. 19(a)–(c) show the583

wavenumber-domain images of conventional PWRTM, RTM,584

and the proposed method, respectively. We observe that com-585

pared with the conventional PWRTM and RTM, our method586

can broaden the frequency band and increase the frequency587

component, verifying the effectiveness of the proposed method588

in improving the imaging resolution.589

The processing time required to achieve the imaging results590

illustrated in Fig. 18 is presented in Table II. The RTM stacked591

image with 277 shots required 28 790 s, and the PWRTM592

stacked image with 71 angles required 4602 s, which is593

approximately 16% of the time required for the traditional594

RTM. The processing time required for the two stacked595

images is large and unacceptable. In comparison, the proposed596

method takes only 470 s, which is approximately 1.6% and597

10% of the time required for the traditional and PWRTM,598

respectively. The extremely high-computational efficiency of599

our method is because of the lower number of migrations. The600

proposed method, involving only seven migrations, achieves601

both crosstalk denoising and imaging enhancement through602

optimal superposition of imaging gathers and maintains high-603

computational efficiency. The proposed method breaks through604

TABLE II

PROCESSING TIME REQUIRED FOR THE DIFFERENT IMAGING RESULTS

PRESENTED IN FIG. 18

the contradiction between computational efficiency and imag- 605

ing accuracy to obtain high-quality imaging results with low- 606

computational cost. The predicted imaging results enable the 607

characterization of fine subsurface structures. 608

V. DISCUSSION 609

In this study, we propose a deep learning method for 610

enhancing PWRTM via a CNN. The network predicts 611

high-quality seismic images by inputting plane-wave images 612

at seven incident angles. Seven plane-wave images mean that 613

only seven times of migration need to be executed, which can 614

significantly save computational time. The functions of the 615

network include optimal stacking of input plane-wave images, 616

noise removal, and imaging enhancement. Traditional plane- 617

wave methods perform linear stacking of multiple plane-wave 618

images of different incident angles, limiting their ability in 619

improving imaging quality. In comparison, networks can per- 620

form nonlinear stacking of plane-wave images, a task in which 621

the networks are skilled. In fact, seven plane-wave images are 622

fed into a CNN in a channel-wise fashion, and convolutional 623

kernels act on these seven images and stack them. CNNs have 624

been shown to have strong capabilities in image denoising, 625

in our research task, both crosstalk artifacts and random noise 626

can be suppressed by a CNN. The labels are high-resolution 627

images convolved from the corresponding reflectivity models, 628

and this can help the network to improve the resolution of the 629

predicted images and achieve imaging enhancement. The test 630

results demonstrate that the trained model can achieve the three 631

functions mentioned above. The proposed method effectively 632

alleviates the conflict between computational efficiency and 633

accuracy in seismic migration and can achieve high-resolution 634

imaging results with low-computational effort. 635

A shortcoming of the method is that the salt mound model 636

was not tested. Theoretically, the proposed method can help 637

to improve the imaging quality under the salt dome. For the 638

salt dome models, the plane-wave migrated images at different 639
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Fig. 17. Imaging results corresponding to the velocities depicted in Fig. 16. Each row of images corresponds to a velocity model in Fig. 16(a)–(f), respectively.
The images in the first column are the plane-wave stacked images, which are the summation of input image gathers. The second column shows the output of
the network. The images in the third column are ground truths (high-resolution images convolved from the corresponding reflectivity models).

Fig. 18. Velocity model with complex structures and its imaging results. (a) True velocity model. (b) High-resolution image convolved from the corresponding
reflectivity model using Ricker wavelet with a dominant frequency of approximately 70 Hz. (c) PWRTM stacked image with 71 incident angles (from
−35◦ ∼ 35◦ with an interval of 1◦). (d) RTM stacked image with 277 shots. (e) PWRTM stacked image with seven incident angles (−30◦ ∼ 30◦ with an
interval of 10◦). (f) Predicted image.
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Fig. 19. Wavenumber-domain images corresponding to the different methods.
The spatial domain seismic images in Fig. 18(c), (d), and (f) are converted
to the wavenumber domain via 2-D Fourier transform. (a) Wavenumber
image of conventional PWRTM. (b) Wavenumber image of conventional RTM.
(c) Wavenumber image of the proposed method.

incident angles contain the signals of subsalt structures, only640

its energy is weak. We believe that the designed network has641

the ability to extract the features of subsalt images. Improving642

the quality of subsalt images with the studied method requires643

building a number of salt models as training data. We hope644

to further extend the application of the research method by645

adding salt models in later studies.646

A problem with seismic migration has a large dependence647

on the migrated velocity models. Similar to traditional migra-648

tion methods, the proposed method requires a relatively accu-649

rate velocity model. If the velocity is not accurate enough, it is650

difficult for the proposed method to obtain a favorable imaging651

result. The study in this article is designed to address the652

problem of conflicting computational efficiency and accuracy653

of seismic migration, and do not consider the effect of velocity654

errors on the predicted images. In contrast, our other two655

studies are to solve the problem of the strong dependence656

of seismic migration on the migrated velocities [55], [64].657

Geng et al. [55] uses a CNN to analyze the features of the658

distorted imaging gathers induced by velocity errors to predict659

accurate velocity models. Li et al. [64] uses a kernel predic-660

tion network to correct for distorted imaging gathers due to661

velocity errors, achieving accurate imaging under inaccurate662

velocity models.663

VI. CONCLUSION664

In this study, we presented a CNN for enhancing PWRTM.665

The network performs an optimal stacking of input noisy666

plane-wave CAIGs and predicts a noise-free and high-quality667

image. To train the network, we designed a workflow to668

build numerous training datasets with diverse structures.669

At each iteration of the training and validation process, random670

extraction of migration images helped expand the dataset.671

A Laplacian pyramid loss function was defined to train the672

network architecture. The results of training and validation673

experiments demonstrate that our trained CNN is effective in674

eliminating the artifacts and improving the imaging quality675

of plane-wave CAIGs. Compared with the traditional RTM 676

and the conventional use of several angles for plane-wave 677

migration, the proposed method requires image gathers with 678

only seven incident angles, improving both computational 679

efficiency and imaging quality. The predicted images have 680

higher resolution and can clearly present the fine subsurface 681

structures. In terms of time consumption, the proposed method 682

requires approximately 1.6% and 10% of the time required by 683

RTM and PWRTM, respectively, for processing a provided 684

test model with a size of 1024 × 256. Extending the image 685

denoising and enhancing tasks for 2-D plane-wave migration 686

to 3-D migration is straightforward by directly replacing 687

the 2-D convolutional kernel with a 3-D kernel. However, 688

building the training datasets requires a relatively large amount 689

of computation compared with the 2-D case. The method 690

described in this study has the potential for generalization to 691

other geophysical imaging methods. 692
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