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Deep Learning for Enhancing Multisource Reverse
Time Migration

Yaxing Li*, Xiaofeng Jia, Xinming Wu

Abstract— Reverse time migration (RTM) is a technique used
to obtain high-resolution images of underground reflectors; how-
ever, this method is computationally intensive when dealing with
large amounts of seismic data. Multisource RTM can significantly
reduce the computational cost by processing multiple shots
simultaneously. However, multisource-based methods frequently
result in crosstalk artifacts in the migrated images, causing
serious interference in the imaging signals. Plane-wave migration,
as a mainstream multisource method, can yield migrated images
with plane waves in different angles by implementing phase
encoding of the source and receiver wavefields; however, this
method frequently requires a trade-off between computational
efficiency and imaging quality. We propose a method based on
deep learning for removing crosstalk artifacts and enhancing
the image quality of plane-wave migration images. We designed
a convolutional neural network that accepts an input of seven
plane-wave images at different angles and outputs a clear and
enhanced image. We built over 500 1024 x 256 velocity models,
and employed each of them using plane-wave migration to
produce raw images at 0°, £10°, £20°, and +30° as input of the
network. Labels are high-resolution images computed from the
corresponding reflectivity models by convolving with a Ricker
wavelet. Random sub-images with a size of 512 x 128 were
used for training the network. Numerical examples demonstrated
the effectiveness of the trained network in crosstalk removal
and imaging enhancement. The proposed method is superior to
both the conventional RTM and plane-wave RTM (PWRTM) in
imaging resolution. Moreover, the proposed method requires only
seven migrations, significantly improving the computational effi-
ciency. In the numerical examples, the processing time required
by our method was approximately 1.6% and 10% of that required
by RTM and PWRTM, respectively.

Index Terms— Computational efficiency, deep learning, high-
resolution imaging, seismic waves.
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I. INTRODUCTION

EISMIC exploration is a geophysical method to infer
Sthe geometries and properties of underground rocks
by analyzing the propagation pattern of seismic waves
generated by artificial seismic sources at the surface. This
method is regarded as one of the most effective methods
to explore oil and gas resources. Complex underground
structural imaging has become particularly valuable in
recent years with increasing resource extraction; therefore,
acquiring high-quality seismic data and developing accurate
imaging algorithms has gained importance. Although wide-
and full-azimuth acquisition techniques can yield adequate
subsurface reflection signals, these massive data also entail a
huge computational overhead [1], [2]. Seismic migration is an
imaging technique that returns the reflections or diffractions
from data to their true subsurface locations, constructing a
high-resolution image of underground structures [3]. Several
migration methods have been developed and applied in earlier
studies [4], [5], for example, Kirchhoff migration [6], [7], [8]
and Gaussian-beam migration [9], [10] based on ray theory,
generalized screen propagators [11], [12] based on one-way
wave equation, and reverse time migration (RTM) [13] based
on two-way wave equation.

RTM, one of the most accurate migration methods, uti-
lizes the full seismic wavefields and is capable of han-
dling arbitrarily complex media with amplitude fidelity [5],
[14]. Fig. 1 illustrates the workflow for executing RTM.
We start by extracting the seismic records as common-shot
gathers and preparing a migration velocity model. Sub-
sequently, we execute the shot loop. For each shot,
we need to forward-extrapolate the source wavefield and
backward-extrapolate the receiver wavefield by loading the
source and corresponding data, respectively. The zero-time
lag cross correlation imaging condition applied on the two
wavefields generates one single-shot image. After the shot
loop is finished, all the single-shot images are stacked to
obtain the final imaging result. However, in this process, the
propagation of the wavefields is extremely time-consuming.
Assuming N sources, a total of N times of migration is
required, corresponding to 2N times of wavefields propa-
gation, which includes N times each of both forward and
backward wavefields propagation. The computational burden
increases significantly with an increasing number of shots.

To reduce the computational cost of RTM, several multi-
source RTM methods have been proposed and developed [15],
[16], [17], [18], [19], [20]. Unlike conventional RTM that
deals with each shot separately, multisource migration methods
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Fig. I. RTM execution workflow. Here i denotes the shot number, ¢ denotes
the time step, and 7 is the total time steps. ps(x,z, i,t) and pR(x,z,i, 1)
represent the source and receiver wavefields of the ith source at time step 7,
respectively.

focus on forming a virtual source and the corresponding
virtual shot gather by weighted summing multiple shots and
their corresponding shot gathers simultaneously. The virtual
shot and its corresponding shot gather are migrated to gen-
erate an image. Multisource RTM reduces the number of
migrations significantly, thus improving computational effi-
ciency. However, a serious drawback of these multisource
methods is that mismatched sources and shot gathers produce
crosstalk artifacts under nonlinear imaging conditions [18],
severely hurting the imaging quality. The study of multisource
RTM in suppressing crosstalk noise has two main tracks.
One is to design different coding functions, and the other
is to develop several denoising or smoothing methods as a
post-stack denoising step or as a constraining operator in
least-square reverse time migration (LSRTM).

For the first research track, such encoding methods are pri-
marily classified into phase and amplitude encoding. Numer-
ous scientists have investigated phase-coding methods [19],
[21], [22], [23], wherein they concentrated on shifting the
crosstalk positions in the migrated images to suppress them.
To date, several types of phase-coding methods have been
developed, such as plane-wave encoding, random phase encod-
ing, modulation encoding, and harmonic encoding. Among
them, the plane-wave RTM (PWRTM) is the most widely
deployed multisource migration method. In PWRTM, different
linear time delays imposed on the source and the receiver
wavefields yield planar wavefields with different angles. The
cross correlation imaging condition is placed on all the angu-
lar planar wavefields to generate the corresponding single-
angle images, which are called common-angle image gathers
(CAIGs). PWRTM images are created by stacking the CAIGs.
The time delay and the number of angles affect the compu-
tational efficiency. A few research works based on amplitude
encoding [16], [17]. In these methods, the imaging results of
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several different encoding functions are stacked to accomplish
signal enhancement and noise suppression [16]. Jia et al. [24]
presented a method for simultaneously encoding the amplitude
and phase. This technique involves fitting the wavefield of
a virtual super-shot in the time domain by encoding the
amplitude and phase of the wavefields excited by multiple
sources at the surface.

For the second research track in suppressing crosstalk
noise, a series of methods have been proposed and devel-
oped, especially in terms of LSRTM. Xue et al. [25] intro-
duced shaping regularization as a structure-oriented smoothing
operator to suppress crosstalk noise in simultaneous-source
data and incomplete data. For further improving the imaging
quality of multisource LSRTM, Chen et al. [26] developed
a local low-rank constrained LSRTM by applying a local
singular spectrum analysis operator to denoising the crosstalk
and preserving the steeply dip-angle events. Chen et al. [27]
(2022) employed a low-rank decomposition operator for
LSRTM of simultaneous-source data and incomplete data
and achieved crosstalk noise suppression and edge pre-
serving. Unlike the regularization-based approach described
above, Zhang et al. [28] (2019) applied an excitation ampli-
tude imaging condition for LSRTM to achieve favorable
suppression of crosstalk noise. A dictionary learning approach
was proposed to mute the crosstalk noise in LSRTM [29].

Although multisource RTM- and LSRTM-based methods
have made great progress, they involve a trade-off between
computational efficiency and suppression of noise. There is
an urgent demand for a method that can guarantee a signif-
icant increase in computational efficiency while eliminating
crosstalk noise.

Deep learning has advanced rapidly in the field of com-
puter vision in recent years owing to the widespread use of
convolutional neural networks (CNNs). CNN-based methods
have progressed substantially in image classification [30],
segmentation [31], object detection [32], and denoising [33]
tasks. Compared with traditional methods, deep learning does
not require manually defined criteria and automatically picks
up the deep-level information of images. Deep learning has
been successfully employed for data processing and interpre-
tation in seismic exploration, for example, seismic data noise
attenuation [34], [35], [36], [37], first-arrival picking [38],
[39], [40], velocity model building [41], [42], [43], missing
seismic data reconstruction [44], impedance inversion [45],
[46], and seismic structural interpretation [47], [48], [49].
Although, a few advances in deep learning have been reported
for simultaneous-source data deblending [50], [51], [52], few
studies used deep learning for image denoising in multisource
seismic migration.

We propose a CNN to eliminate the crosstalk in the migrated
images and enhance the PWRTM image quality. The input of
the network are CAIGs, that is, a combination of plane-wave
images with seven incident angles (0°, £10°, £20°, and
+30°). The input has seven channels. The desired output
is a clear and high-resolution image convolved from the
corresponding reflectivity model, and we called it ’a convolved
image”. The designed network architecture is a modified
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U-net network [53] with three parts: an encoder, decoder, and
refinement module. The encoder learns the features of input
noisy image gathers at different levels. The decoder restores
the high-level feature map to the same size as that of the
input images. The refinement module predicts a clear image.
To generate rich training data, we began by building about 500
2-D velocity models with different types of structures. With
these velocity models, we placed the source and geophones
at the surface to simulate the corresponding synthetic seismic
records using the finite difference method. A slight smoothing
was conducted on these velocity models, and the smoothed
velocity models were employed for PWRTM to obtain CAIGs.
Labels (high-resolution convolved images) were built by true
velocity models. We defined a Laplacian pyramid-£1 loss
function for training the network. Using the training data and
network architecture, we trained the CNN model with the
defined loss function. Through numerical examples, we com-
pared the stacked images of input CAIGs (i.e., the PWRTM
images), predicted results, and ground truths. The comparisons
revealed that the trained model realizes crosstalk removal and
improves the imaging resolution. In addition, we tested the
model with complex structures and compared the results for
a stacked image of input CAIGs (i.e., simplified PWRTM
image with only seven angles), traditional RTM image with
277 shots, and PWRTM image with 71 angles in terms of the
image quality and processing time.

II. THEORY
A. Plane-Wave RTM

The 2-D first-order velocity-stress equation in the acoustic
medium is written as

ooy  1dp

ot pox

oo 10

7t _.9 (1)
ot p 0z

op _ —pc2<avx n 802).

ot ox 0z
Here v, and v, denote the x- and z-components of particle
velocity, respectively; p is the pressure wavefield. p and
c indicate the density and acoustic velocity of the media,
respectively. In the conventional RTM, the source wavefield
pS(x,z,i,1) of shot i is cross-correlated with its correspond-

ing receiver wavefield p®(x,z,i,t), and we can obtain a
single-shot image as follows:

T
I,z,0) =Y px,2,i,)p"(x,2,i, T—1) (2
=0
where T represents the recording time. Summing all the
single-shot images, we obtain a stacked image Iy (x,z),
represented by

N
Lum(¥,2) = Y 1(x,2,0) 3)
i=1

where N is the number of shots. For this method, we need
N forward extrapolations of the source wavefield and N

4512313

Shot number ¢

Depth z

Distance

Fig. 2. Schematic of plane wave encoding. The blue octagons indicate the
original shots or shot records, and the red octagons indicate the encoding
shots or shot records.

backward extrapolations of the receiver wavefield, leading
to a total of 2N simulation cycles. As the number of shots
increases, the computational consumption of the conventional
RTM is enormous.

For the PWRTM, linear time delay encoding functions are
executed on the shot records to construct plane waves, and the
encoding functions are expressed as [15]

N
dym (. 1,0) =Y di(xg, 1) % 6(t — 7;(0)) )
i=1
where d;(x,,t) and 7; denote ith shot record and its corre-
sponding time-shift function, respectively. The time-shifted
shot records are stacked to obtain a plane wave record
dsum(xg,t,0) with the surface incidence angle of ¢. The
surface incidence angle 6 is defined as the angle between the
propagation direction of the incident plane wave and the depth
direction (see Fig. 2). The shots and shot records are encoded
in the same way, and the encoding source-time function for
the ith shot is expressed as

Wi(t,0) = f(t) % 6(t — 7 (0)) (5)

where W;(z,6) denotes the encoding source-time function
of the ith shot, and f(r) denotes the original source-time
function. Fig. 2 shows the schematic of plane wave encoding.
The blue and the red octagons indicate the original and the
encoding shots, respectively. Assuming that the incidence
angle of the plane wave is 6, the time shift of the ith shot
is expressed as

7(0) = %(x,» —x0) ©)

where vo represents the seismic velocity at surface and x;
represents the position of ith shot. As the incident angle 6
is large, the time shift 7; increases.

In fact, the encoding functions applied to the shots and shot
records are equivalent to the encoding functions acting on
the source and receiver wavefields. The source and receiver
wavefields of each shot are first encoded by time delay,
and the encoding source and receiver wavefields of all shots
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are, respectively, stacked to obtain the corresponding stacked
wavefields. The stacked source p3 = and receiver wavefields
pR . at the incident angle of 6, respectively, assume the form

N
Pm(x,2,1,0) = Zps(x,z, i,t —1;(0))
Phn(x, 2, 1,0) =" pR(x, 2,0t — 7 (0)).

i=1

Various time delay patterns form different incident-angle
wavefields. Using the source wavefield as an example, Fig. 3
shows a schematic for constructing a plane wave. Fig. 3(a)
illustrates a plane wave with 0° incidence angle, in which case
the plane wave does not need to perform any time delay. The
red octagon here indicates the encoded sources. When a linear
time delay is applied to the sources at the surface, a plane wave
with an incidence angle of 8 is formed as shown in Fig. 3(b).

The cross correlation imaging condition is applied to the
stacked wavefields and one plane-wave image /P at an angle
of @ can be obtained, expressed by

T

1P (x,z,0) = Z Pz, t,0)pR (x,2, T —1,0). (8)
=0

Owing to the complexity of underground structures, obtaining

a desirable migrated image from only one angle is difficult,

and accomplishing multiple angles migration is necessary.

Summing the multiangle plane-wave images yield a final

stacked image, represented by

I (x,2) = Y 1P (x, 2, 0). ©)
0

Here we set the number of incident angles 6 to M. By com-
paring the conventional (3) and PWRTM (9) methods, we find
that the migration number of conventional RTM is the same
as the number of shots N, while the migration number of
plane-wave migration is equal to the number of plane-wave
angles M. For PWRTM, the choice of plane-wave angles
is critical, as it significantly affects imaging accuracy and
computational efficiency.

B. CNN Architectures

As mentioned earlier, plane-wave migration requires a suit-
able number of angles, i.e., the same number of migrations,
to achieve a balance between computational consumption and
imaging quality. It is a challenge to obtain high-accuracy
imaging results with a small number of migrations. In addi-
tion, (9) is a linear superposition of plane-wave migration
images of multiple angles, and such a linear superposition
provides limited scope for suppressing crosstalk and improving
imaging quality. To resolve this limitation, we designed an
end-to-end CNN architecture (Fig. 4) to denoise and enhance
the plane-wave migrated images. The proposed architecture
accepts CAIGs, that is, a combination of plane-wave images
with seven incident angles (0°, £10°, £20°, +30°) as input.
The 3-D CAIG is input by channels, so the input feature maps
are 2-D and the number of input channels is 7. The desired
output of the network is a noise-free high-resolution image
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Fig. 3. Schematic of plane wave synthesis. (a) Plane wave at incident angle
6 = 0°. (b) Plane wave at incident angle 6.

convolved from the corresponding reflectivity model corre-
sponding to the Ricker wavelet with a dominant frequency of
approximately 70 Hz. The network has three potential func-
tions: optimal stacking of the images with multiple incidence
angles, crosstalk noise removal, and imaging enhancement.
The proposed architecture is designed by replacing the convo-
lutional blocks in a U-net network [53], which comprises three
parts: an encoder, decoder, and refinement module [54], [55].
Regarding the encoder and decoder structure, the U-net can
help extract multiscale structural features of seismic images.

Several layers of ResNet-18 [56] are used to constitute the
encoder part. ResNet-18 comprises 18 layers of residual net
and can address the degradation problem of neural networks
with depth. A series of residual blocks are stacked to form the
Resnet-18. Fig. 5 illustrates a residual block, which comprises
two 3 x 3 convolution filters. The shortcut of the residual block
enables the network to learn the seismic structural features
easily [56]. The details of the layers or blocks used in the CNN
architecture are shown in Table I. When we input raw plane-
wave CAIGs, after two 5 x 5 convolution layers followed by
batch normalization and rectified linear unit (ReLU) activation
function, the feature map size becomes 1/2 of the input
image. After max pooling and four blocks (Block1-Block4) of
Resnet-18, the feature map size successively becomes 1/4, 1/8,
1/16, and 1/32 of the input. Here, each block among Block1—
Block4 contains two residual blocks (Fig. 5).

The decoder part is designed to recover the desired size
of the feature map from the encoder part. We used the
upsampling block with reference to [55], [57]. As shown in
Fig. 6, the upsampling block, which is somewhat similar to
the residual block (Fig. 5), has a shortcut. This upsampling
structure allows for efficient access to global information. For
the upsampling block, the input feature map is first bilinearly
interpolated to enlarge the size. The expanded-size feature
map is then subjected to double convolutional layers and one
convolutional layer, respectively. Finally, the two parts are
superimposed with a shortcut. Using five upsampling blocks
(UpBlock0O-UpBlock4), the feature map size becomes 1/16,
1/8, 1/4, 1/2, and 1 the size of the input images, successively.
We concatenated different scale layers between the encoder
and decoder parts (dark blue arrows in Fig. 4).
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Fig. 4. Proposed CNN architecture. The input is noisy CAIGs of PWRTM, which is a combination of plane-wave images with seven incident angles (0°,
+10°, £20°, and £30°). The 3-D CAIG is fed into a CNN in a channel-wise fashion; the feature map is 2-D and the number of input channels is 7. The
output is a clear and enhanced image. The CNN architecture comprises encoder, decoder, and refinement parts. The yellow rectangles are the layers inside
the CNN. The size of these rectangles denotes the size of each layer’s feature maps and the numbers below them denote the number of channels for each

layer. The arrows indicate the operations between different layers.
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Fig. 5. Structure of residual block.
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Fig. 6. Structure of upsampling block.

Regarding the refinement part, we stacked three convolu-
tional layers (Conv4-Conv6). Conv4 and Conv5 operate with
a 5 x 5 convolution kernel, batch normalization, and ReLU.
The last convolutional layer (Conv6) is a straightforward
5 x 5 convolution kernel to obtain the final output of the
network.

C. Loss Functions

We defined a loss function based on the Laplacian pyramid-
L1 loss to train and validate the proposed network. The loss

TABLE I

DETAILS OF THE LAYERS OR BLOCKS USED IN EACH SECTION OF THE
CNN ARCHITECTURE, INCLUDING KERNEL SIZE, SCALE, AND THE
NUMBER OF CHANNELS OF THE INPUT AND
OUTPUT FEATURE MAPS

Section Layer/Block Ksei;l:’el Scale CIhna[:::ntel C(:ll:ll:;l:l
Convl 5 1/2 7 7
Conv2 1/2 7 64
Pooll 1/4 64 64
Encoder Blockl 1/4 64 64
Block2 1/8 64 128
Block3 1/16 128 256
Block4 1/32 256 512
Conv3 1 1/32 512 512
UpBlock0 1/16 512 256
UpBlock1 1/8 512 128
Decoder UpBlock2 1/4 256 64
UpBlock3 1/2 128 64
UpBlock4 1 128 64
Conv4 5 1 64 64
Refinement Conv5 5 1 64 64
Conv6 5 1 64 64
function follows the form presented in [58]:
M
Lip =D 27|(L (5f) =L/ ()| (10)

J

where L7(y}) and L/(y;) represent the jth level Laplacian
pyramid features of the predicted and label images, respec-
tively. We first impose average pooling with different sizes
on the predicted and the label images to obtain different
levels Laplacian pyramid features. Then L1 losses of predicted
and label image features at different scales are calculated
separately, and these L1 losses are weighted and summed to
obtain the final loss. In our training process, M equaled 5,
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Fig. 7. Four-layer velocity model and its imaging results. (a) True velocity
model. (b) Migration velocity model. (¢) CAIGs obtained with PWRTM with
71 incident angles (from —35° ~ 35° with an interval of 1°). (d) CSIGs
obtained using typical RTM with 277 shots. (e) PWRTM stacked image of
71 incident angles, produced by stacking the image gathers as shown in
Fig. 7(c) along the angular direction. (f) Conventional RTM stacked image
with 277 shots. (g) PWRTM stacked image of seven incident angles (—30° ~
30° with an interval of 10°). (h) High-resolution image convolved from
the corresponding reflectivity model using Ricker wavelet with a dominant
frequency of approximately 70 Hz.

which means that £1 loss function was conducted on images at
five different scales. The Laplacian pyramid loss is of potential
importance in multiscale image denoising and enhancement.

III. EXPERIMENTS
A. Comparison Experiment of RTM and PWRTM

To visually compare the regular and PWRTM, we designed
a simple velocity model with a size of 1024 x 256 and a
grid interval of 5 m [Fig. 7(a)]. The sources and geophones
were arranged on the surface and the seismic records were
synthesized by seismic modeling using the finite difference
method. We employed the first-order derivative of a Gaussian
wavelet with a dominant frequency of 25 Hz as the source-
time function. The number of shot gathers was set as 277 and
shot interval as 20 m. The recording time was set as 6 s and
time interval as 0.4 ms. The true velocity shown in Fig. 7(a)
was smoothed to obtain a migration velocity [Fig. 7(b)]. With
the migrated velocity model and synthetic seismic records,
we performed regular RTM and PWRTM to obtain the imag-
ing results. Fig. 7(c) illustrates the CAIGs obtained using
the PWRTM (5), which has 71 angles from —35° to 35°
with an interval of 1°. When performing the PWRTM, the
maximum-delayed time was set as 2.8 s; therefore, the total
simulation time was 8.8 s, which is approximately 1.5 times
the original record length. The time delay implies an incre-
ment in computational effort. We stacked all 71 plane-wave
migrated images to obtain the image shown in Fig. 7(e).
Although this image reflects the underground structure sat-
isfactorily and the crosstalk artifacts are well suppressed,
it requires 71 migrations and is computationally inefficient.
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To reduce the computational burden, we selected the images
corresponding to —30° ~ 30° with an interval of 10° for
the CAIGs [Fig. 7(c)], and then summed them to obtain the
PWRTM stacked image with seven incident angles, as shown
in Fig. 7(g). It is evident that although the image in Fig. 7(g)
can generally reveal the underground structures, it is heavily
affected by crosstalk artifacts.

Fig. 7(d) shows the common-shot image gathers (CSIGs)
using conventional RTM (2). For the generation of image
gathers shown in Fig. 7(d), 277 shots correspond to 277 cycles
of migration, which requires a large amount of computation
time. The total images of 277 shots are stacked to obtain the
image shown in Fig. 7(f). The imaging result is satisfactory,
except for the presence of low-frequency artifacts in the
shallow part. The required computation time for obtaining the
results shown in Fig. 7(e)—(g) is 4596, 29027, and 468 s,
respectively. Comparing the three images in Fig. 7(e)—(g), that
in Fig. 7(g) requires the least computational consumption;
however, it suffers the greatest interference from artifacts.
Fig. 7(h) presents a high-resolution image derived by convolv-
ing the reflectivity of this model with a Ricker wavelet with
an approximately 70 Hz dominant frequency. The reflectivity
can be acquired from the true velocity model [Fig. 7(a)].
The high-resolution convolved image is our expected ideal
image of the subsurface structure. Based on the above findings,
this study aimed to obtain high-quality imaging results with
the minimum possible computation time, and deep learning
provides a useful tool to help achieve this goal.

B. Training Datasets

A large amount of input data and corresponding labels
are essential during the training and validation of a CNN
model. To implement image denoising and enhancement of
plane-wave migration by training a CNN, we need diverse
plane-wave migration image gathers and corresponding tar-
gets, that is, high-resolution images convolved from the
corresponding reflectivity models. By extracting multiple
sub-images from a migrated image and the corresponding
target image, we can obtain a large amount of training data.
We designed a workflow to build velocity models and their
corresponding migrated image gathers, as shown in Fig. 8.
In this workflow, we first created a vast number of 2-D true
velocity models of size 1024 x 256. Using the velocity models,
we placed sources and geophones at the surface and syn-
thesized seismic records through finite-difference simulation.
Velocity models were also employed to derive the reflectivities,
which were then convolved with a Ricker wavelet with a
dominant frequency of approximately 70 Hz to produce clear
and high-resolution convolved images. The true velocities
were smoothed and were used for the plane-wave migration to
obtain the imaging gathers. At each iteration during training,
the image gathers were fed into the network, producing
predicted images. We calculated the residuals between the
predicted images and the corresponding clear images (i.e., the
high-resolution convolved images), and we back-propagated
the residuals to the network. In training, the network adjusts
the parameters until they meet our requirements.
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Fig. 10. Marmousi velocity model. To create the velocity models, we ran-
domly extracted different regions (white rectangle boxes) of the model and
applied affine transformations on the extractions to obtain diverse structural
velocities.

1) Synthetic Velocity Models and Seismic Records: As
shown in the workflow in Fig. 8, the formation of image gath-
ers and labels requires velocity models and seismic records.
The structural diversity of velocity models has a strong impact
on the quality of output images. We used two schemes to
automatically build different types of velocities. For the first
scheme, we followed the work of Wu er al. [59] to create
the velocity models. We started with 3-D flat velocity models
[Fig. 9(a)], and then added the folding [Fig. 9(b)], and faulting
[Fig. 9(c)]. Thus, we constructed 100 3-D velocity models
embodying different structures. We extracted one vertical slice
from these 3-D velocity models along the inline direction and
obtained 100 2-D-velocity models.

In the second scheme, we performed random extractions
from the Marmousi velocity model [60] (Fig. 10) and con-
ducted affine transformations on these extractions using the
augmentor tool [61]. The affine transformations include elastic
distortions, perspective transforms, zooms, and their combina-
tions. 405 velocity models were created. Notably, although the
sizes of the randomly chosen regions were not fixed, they are
all resampled to the same size of 1024(distance) x 256(depth).

Fig. 11 shows six typical velocity models, and we observed
that these velocity models contain either simple or complex
structures, such as horizontal layers, folds, and faults. The
richness of models can help the proposed CNN perform well
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Plane-wave image gathers corresponding to the velocity models
shown in Fig. 11, respectively. These imaging gathers have seven incidence
angles (0°, £10°, £20°, £30°) and are heavily disturbed by crosstalks.

at learning the image features. Using the velocity models,
we simulated the corresponding seismic records. The sim-
ulations were performed with four dominant frequencies of
the source wavelets: 15, 20, 25, and 30 Hz. The sources and
geophones were distributed on the entire surface. The number
of shots was 277.

2) Synthetic Migrated Images and High-Resolution Images
Convolved From the Corresponding Reflectivity Models:
Using the velocity models and corresponding synthetic seismic
records, we employ PWRTM to obtain migrated image gath-
ers. The smoothed velocities were used for the PWRTM (5),
forming CAIGs (Fig. 12). We can observe that these images
are interrupted by crosstalk artifacts, which even obscure the
true signals.

The true velocities were employed to obtain high-resolution
images convolved from the corresponding reflectivity models
(Fig. 13). Compared to the noisy image gathers (Fig. 12), the
“true” images in Fig. 13 are clear and present the underground
structure accurately. In terms of computational efficiency, the
noisy image gathers shown in Fig. 12 require only seven cycles
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corresponding to the velocities depicted in Fig. 11, respectively. These
images have high quality and are free from crosstalk artifacts, as desired
for subsurface images.

High-resolution images convolved from the reflectivity models
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Fig. 14. Loss of designed network for training and validation datasets.

of migration because of the implementation of simplified
PWRTM with seven angles to generate the raw images.

C. Training and Validation

Utilizing the above-discussed method, we synthesized over
500 datasets. We utilized approximately 80% of the datasets
for training and the remaining for validation. To expand the
training data, four randomly extracted data of size 512 x
128 were trained for each epoch of the dataset during training
and validation of the network. We normalized the input image
gathers along channel directions to ensure their amplitude
consistency.

We used the Pytorch version 1.0 [62] for the denoising
and enhancement of seismic images. The network was trained
using NVIDIA Tesla V100 graphics processing unit (GPU)
with 32 GB memory. The batch size was set as 32, with an
initial learning rate of 107*.

We performed training with the Adam optimizer [63] on
these hyperparameters and normalized seismic image gathers
to update the model parameters. We terminated the training
process after 300 epochs of training and validation. Fig. 14
shows the loss of the trained model, and it is visible that both
the training and valid losses converge to small values.

Fig. 15 the feature maps of predicted images and labels at
five different levels, and these images reflect the features of
different resolutions. Performing loss functions on the images
at five levels can help the network to extract effective features
well.
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IV. RESULTS

To test the trained model, we designed velocity models
with different structures, as shown in Fig. 16. These velocity
models contained horizontal layers, folds, faults, and their
combinations. The sampling size of the velocity models was
1024 x 256. With these velocity models, we employed the
previously mentioned approach of building training datasets to
obtain the corresponding plane-wave image gathers and high-
resolution images. For plane-wave migration, different dom-
inant frequencies of seismic wavelets were used to produce
images with varying resolutions. Allowing for responses to
different frequencies, the models shown in Fig. 16 were setup
with different dominant frequencies of wavelets, including 20,
25, 25, 25, 30, and 30 Hz.

To demonstrate the effectiveness of our method, we com-
pared three types of images: stacked PWRTM image (i.e.,
stack of the input images), predicted image, and ground truth.
The imaging results corresponding to the velocity models
shown in Fig. 16 are illustrated in Fig. 17. The plane-wave
stacked images are displayed in the first column in Fig. 17,
and severe interference from crosstalk noise can be observed,
with low resolution and poor imaging quality. Similar to the
ground truths (third column in Fig. 17), the predicted images
(second column in Fig. 17) are free from interference from
crosstalk artifacts and the signals are enhanced. In addition,
the predicted images have high resolution and imaging quality.
Owing to the frequency-band limitation of the wavelets and the
effect of crosstalk noises, thin layers are difficult to recognize
in the plane-wave stacked images, whereas the same are
clearly visible in the high-resolution predicted images (marked
by red arrows in Fig. 17). Hence, the designed network
achieves optimal superposition of imaging gathers, suppression
of crosstalk artifacts, and imaging enhancement.

Next, used the trained network to test a model with greater
complexity, as illustrated in Fig. 18. Fig. 18(a) shows the
velocity model with a size of 1024 x 256, with dense layers
and steeply dipping folds and multiple faults. This complex
model tends to present difficulties in seismic imaging. The
parameters are similar to the model shown in Fig. 7 except
that the delay time is 3.6 s. To demonstrate the merits of the
trained model, we compared the predicted image [Fig. 18(f)]
with the high-resolution image [Fig. 18(b)] convolved from
the corresponding reflectivity model, PWRTM stacked image
[Fig. 18(c)], traditional RTM stacked image [Fig. 18(d)],
and stacked image of input image gathers [Fig. 18(e)]. The
PWRTM stacked image shown in Fig. 18c was produced by
summing plane-wave images at 71 angles (from —35° ~ 35°
with an interval of 2°), which requires 71 migrations. The
RTM stacked image exhibited in Fig. 18(d) was generated
by summing single-shot images of 277 shots, which requires
277 migrations. Both these types of stacked images [Fig. 18(c)
and (d)] allow for clear imaging of subsurface structures with-
out crosstalk artifacts. However, they are limited in resolution
and insensitive to fine layers owing to the influence of wavelet
frequencies [red arrows in Fig. 18(c) and (d)]. The plane-wave
CAIGs of seven angles (from —30° ~ 30° with an interval of
10°) were fed into the network to obtain the predicted image
shown in [Fig. 18(f)]. The stacked image of the seven input
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Fig. 16. Examples of velocity models with different structures for testing
the trained model.

image gathers is shown in Fig. 18(e). The image in Fig. 18(e)
is heavily affected by crosstalk noise and has poor imaging
quality. Similar to the ground truth depicted in Fig. 18(b), the
predicted image [Fig. 18(f)] eliminates crosstalk artifacts from
the input image gathers and improves the imaging resolution
for high-quality imaging of subsurface fine structures.

We analyze the wavenumber components by trans-
forming the imaging results in the spatial domain in
Fig. 18(c), (d), and (f) to the wavenumber domain via
the 2-D Fourier transform. Fig. 19(a)-(c) show the
wavenumber-domain images of conventional PWRTM, RTM,
and the proposed method, respectively. We observe that com-
pared with the conventional PWRTM and RTM, our method
can broaden the frequency band and increase the frequency
component, verifying the effectiveness of the proposed method
in improving the imaging resolution.

The processing time required to achieve the imaging results
illustrated in Fig. 18 is presented in Table II. The RTM stacked
image with 277 shots required 28790 s, and the PWRTM
stacked image with 71 angles required 4602 s, which is
approximately 16% of the time required for the traditional
RTM. The processing time required for the two stacked
images is large and unacceptable. In comparison, the proposed
method takes only 470 s, which is approximately 1.6% and
10% of the time required for the traditional and PWRTM,
respectively. The extremely high-computational efficiency of
our method is because of the lower number of migrations. The
proposed method, involving only seven migrations, achieves
both crosstalk denoising and imaging enhancement through
optimal superposition of imaging gathers and maintains high-
computational efficiency. The proposed method breaks through
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Feature maps of one label image at different levels

TABLE II

PROCESSING TIME REQUIRED FOR THE DIFFERENT IMAGING RESULTS
PRESENTED IN FIG. 18

RTM PWRTM PWRTM
Methods — iih 277 shots with 71 angles with 7 angles OUF Method
Processing time ¢ 4,602 469 470

(second)

the contradiction between computational efficiency and imag-
ing accuracy to obtain high-quality imaging results with low-
computational cost. The predicted imaging results enable the
characterization of fine subsurface structures.

V. DISCUSSION

In this study, we propose a deep learning method for
enhancing PWRTM via a CNN. The network predicts
high-quality seismic images by inputting plane-wave images
at seven incident angles. Seven plane-wave images mean that
only seven times of migration need to be executed, which can
significantly save computational time. The functions of the
network include optimal stacking of input plane-wave images,
noise removal, and imaging enhancement. Traditional plane-
wave methods perform linear stacking of multiple plane-wave
images of different incident angles, limiting their ability in
improving imaging quality. In comparison, networks can per-
form nonlinear stacking of plane-wave images, a task in which
the networks are skilled. In fact, seven plane-wave images are
fed into a CNN in a channel-wise fashion, and convolutional
kernels act on these seven images and stack them. CNNs have
been shown to have strong capabilities in image denoising,
in our research task, both crosstalk artifacts and random noise
can be suppressed by a CNN. The labels are high-resolution
images convolved from the corresponding reflectivity models,
and this can help the network to improve the resolution of the
predicted images and achieve imaging enhancement. The test
results demonstrate that the trained model can achieve the three
functions mentioned above. The proposed method effectively
alleviates the conflict between computational efficiency and
accuracy in seismic migration and can achieve high-resolution
imaging results with low-computational effort.

A shortcoming of the method is that the salt mound model
was not tested. Theoretically, the proposed method can help
to improve the imaging quality under the salt dome. For the
salt dome models, the plane-wave migrated images at different
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Fig. 17. Imaging results corresponding to the velocities depicted in Fig. 16. Each row of images corresponds to a velocity model in Fig. 16(a)—(f), respectively.
The images in the first column are the plane-wave stacked images, which are the summation of input image gathers. The second column shows the output of
the network. The images in the third column are ground truths (high-resolution images convolved from the corresponding reflectivity models).
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Fig. 18. Velocity model with complex structures and its imaging results. (a) True velocity model. (b) High-resolution image convolved from the corresponding
reflectivity model using Ricker wavelet with a dominant frequency of approximately 70 Hz. (c¢) PWRTM stacked image with 71 incident angles (from
—35° ~ 35° with an interval of 1°). (d) RTM stacked image with 277 shots. (¢) PWRTM stacked image with seven incident angles (—30° ~ 30° with an
interval of 10°). (f) Predicted image.
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Fig. 19. Wavenumber-domain images corresponding to the different methods.
The spatial domain seismic images in Fig. 18(c), (d), and (f) are converted
to the wavenumber domain via 2-D Fourier transform. (a) Wavenumber
image of conventional PWRTM. (b) Wavenumber image of conventional RTM.
(c) Wavenumber image of the proposed method.

incident angles contain the signals of subsalt structures, only
its energy is weak. We believe that the designed network has
the ability to extract the features of subsalt images. Improving
the quality of subsalt images with the studied method requires
building a number of salt models as training data. We hope
to further extend the application of the research method by
adding salt models in later studies.

A problem with seismic migration has a large dependence
on the migrated velocity models. Similar to traditional migra-
tion methods, the proposed method requires a relatively accu-
rate velocity model. If the velocity is not accurate enough, it is
difficult for the proposed method to obtain a favorable imaging
result. The study in this article is designed to address the
problem of conflicting computational efficiency and accuracy
of seismic migration, and do not consider the effect of velocity
errors on the predicted images. In contrast, our other two
studies are to solve the problem of the strong dependence
of seismic migration on the migrated velocities [55], [64].
Geng et al. [55] uses a CNN to analyze the features of the
distorted imaging gathers induced by velocity errors to predict
accurate velocity models. Li er al. [64] uses a kernel predic-
tion network to correct for distorted imaging gathers due to
velocity errors, achieving accurate imaging under inaccurate
velocity models.

VI. CONCLUSION

In this study, we presented a CNN for enhancing PWRTM.
The network performs an optimal stacking of input noisy
plane-wave CAIGs and predicts a noise-free and high-quality
image. To train the network, we designed a workflow to
build numerous training datasets with diverse structures.
At each iteration of the training and validation process, random
extraction of migration images helped expand the dataset.
A Laplacian pyramid loss function was defined to train the
network architecture. The results of training and validation
experiments demonstrate that our trained CNN is effective in
eliminating the artifacts and improving the imaging quality
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of plane-wave CAIGs. Compared with the traditional RTM
and the conventional use of several angles for plane-wave
migration, the proposed method requires image gathers with
only seven incident angles, improving both computational
efficiency and imaging quality. The predicted images have
higher resolution and can clearly present the fine subsurface
structures. In terms of time consumption, the proposed method
requires approximately 1.6% and 10% of the time required by
RTM and PWRTM, respectively, for processing a provided
test model with a size of 1024 x 256. Extending the image
denoising and enhancing tasks for 2-D plane-wave migration
to 3-D migration is straightforward by directly replacing
the 2-D convolutional kernel with a 3-D kernel. However,
building the training datasets requires a relatively large amount
of computation compared with the 2-D case. The method
described in this study has the potential for generalization to
other geophysical imaging methods.
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