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Deep Learning for Simultaneous Seismic Image
Super-Resolution and Denoising

Jintao Li , Xinming Wu , and Zhanxuan Hu

Abstract— Seismic interpretation is often limited by low resolu-
tion and strong noise data. To deal with this issue, we propose to
leverage deep convolutional neural network (CNN) to achieve
seismic image super-resolution and denoising simultaneously.
To train the CNN, we simulate a lot of synthetic seismic images
with different resolutions and noise levels to serve as training data
sets. To improve the perception quality, we use a loss function
that combines the �1 loss and multiscale structural similarity loss.
Extensive experimental results on both synthetic and field seismic
images demonstrate that the proposed workflow can significantly
improve the perception of quality of original data. Compared to
conventional methods, the network obtains better performance
in enhancing detailed structural and stratigraphic features, such
as thin layers and small-scale faults. From the seismic images
super-sampled by our CNN method, a fault detection method
can compute more accurate fault maps than from the original
seismic images.

Index Terms— Deep learning, geophysical image processing,
image denoising, super-resolution.

I. INTRODUCTION

SEISMIC interpretation is sensitive to the quality of seis-
mic data. Due to the limitations of seismic acquisition

and processing, the field seismic data often suffer from low
resolution and noise corruption, which bring challenges to
subsequent seismic interpretation. Two potential technologies
to solve these issues are image super-resolution and image
denoising.

In the last two decades, many researchers have devel-
oped numerous methods to increase the resolution of seismic
images. These methods can be roughly grouped into two
categories: high-density acquisition [1], [2] and broadband
seismic [3]–[5]. The former, as the name suggests, generally
increases the horizontal resolution by acquiring a densely
sampled data set utilizing a larger number of sources and
receivers. While the latter improves the vertical resolution
by recording a full range of frequencies, including low- and
high-frequency parts. However, both of them are costly in
data acquisition and processing. Because they require more
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sources and receivers to increase the density of samples, better
instruments to record a wider range of frequencies during
acquisition. Besides, a significantly more computational cost
is required for processing the data sets.

For the second potential technology: seismic image
denoising, a number of effective methods have been
proposed [6]–[11]. These methods enhance the structural
and stratigraphic features and attenuate random noise in
seismic image by constructing structure-oriented filters to
smooth a seismic image along reflections. To construct such
structure-oriented filters, researchers can utilize anisotropic
diffusion [6], [8], [11], the steered Kuwahara filter [7],
plane-wave prediction [9], and steered bilateral filter [10].
Wu and Guo [11] proposed a method to simultaneously
enhance reflections, faults, and channels in a seismic image
by using the fast explicit diffusion (FED). Although these
methods can attenuate the random noise and enhance the
structural and stratigraphic features, they also damage some
useful details of geological structural features in the seismic
image.

In recent years, with the advancement of hardware com-
puting power, especially graphics processor units (GPUs),
many deep learning methods have been proposed and achieved
success in many computer vision tasks including natural image
super-resolution and denoising [12]–[15]. These methods have
used deep convolutional neural network (CNN) to achieve
remarkable performance. And once the model is well-trained,
it takes only a brief amount of time in the application. Inspired
by these CNNs, this article deviates from the traditional
methods and leverages deep CNN to achieve seismic image
super-resolution and denoising simultaneously. Nevertheless,
directly using such methods to address the seismic image often
encounter two significant issues. The first issue is the lack of
training data. Unlike natural images, we cannot obtain a large
amount of noise-free field seismic images with high resolution
as labels. Some authors [16] select a modern, high-fidelity 3-D
seismic survey with well-imaged faults as the donor survey.
However, it may be insufficient for training. The second is
perception quality. Existing CNN-based methods generally use
a mean absolute error (�1) loss, which tends to generate blurry
and overly smoothed results, especially near the faults, and
therefore limits the subsequent seismic interpretation.

To tackle the first issue, we follow the workflow proposed
by Wu et al. [17] and [18] and generate 800 synthetic seismic
volumes. Subsequently, we extract plenty of 2-D inputs from
generated 3-D volumes to serve as the training data sets.
Besides, to tackle the second issue, we replace the �1 loss
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with a new objective, a combination of �1 loss and mul-
tiscale structural similarity (MS-SSIM) [19] loss, which is
also used in computer version task [20]. The network used
in our method is a variant of U-net [21], which introduces
a subpixel layer [22] and several residual blocks. The details
can be found in Section IV. Some machine learning algo-
rithms [23] leverages multikernel learning to improve accuracy
and stability. To validate the performance of the proposed
method, we conduct extensive tests on both synthetic and field
seismic data. And the experimental results demonstrate that the
network trained on only the synthetic data can significantly
improve the perception quality of field seismic data, and the
detailed structural and stratigraphic features are enhanced,
such as thin layers and small-scale faults. From the seismic
images super-sampled by our CNN method, a fault detection
method can compute a more accurate fault map than from the
original seismic images.

II. PROBLEM DEFINITION

Image super-resolution and image denoising are both
low-level vision tasks and processed similarly. We first ana-
lyze the principle of the two problems. For seismic super-
resolution, the relationship between high-resolution seismic
images and low-resolution seismic images follows the formula:

IL = Down(IH ,�1) (1)

where IL and IH represent as the low-resolution seis-
mic images and high-resolution seismic images, respectively,
Down denotes a degradation mapping function and �1 is
the parameters of Down. The goal of super-resolution is
to reconstruct IS to approximate the high-resolution seismic
images IH from the low-resolution seismic images IL through
a CNN or other methods.

For seismic denoising, if Ip and IN denote the clean and
noisy seismic images, respectively, then the relationship can
be expressed as follows:

IN = Ip + n (2)

where n is the noise added to Ip . Our purpose is to obtain the
noise distribution n and then subtract it from noise seismic
images IN to obtain output images that approximate the clean
seismic images Ip .

In this work, we tackle those two issues simultaneously.
The noise-free seismic images with high resolution and the
noise seismic images with low resolution are used as ground
truth Igt and input Iinput , respectively. We recover a seismic
approximation Ioutput of the ground truth Igt from the input,
following:

Ioutput = N(Iinput,�2) (3)

where N denotes the CNN used, and �2 are the parameters
of the network. We aim to leverage deep CNN to achieve
seismic image super-resolution and denoising simultaneously.
The details of the used CNN model are as follows.

III. TRAINING DATA SETS

Before training a model for super-resolution and denoising
together, we need many 2-D high resolution pure seismic

images as the ground truth. In practice, however, such data
sets are rare. To this end, we follow a workflow provided by
Wu et al. [17] and [18] to build a realistic structure model,
and then extract thousands of 2-D sections for training.

A. Generate Training Data

We first generate 800 synthetic 3-D seismic cubes with
size 256 × 256 × 256, as shown in Fig. 1. In this workflow,
we first build an initial reflectivity model with all flat layers.
Subsequently, we need to add some structures to simulate
field seismic image. The folding and faulting structures are the
most important structures of field seismic data. We vertically
sheared the initial model to create folding structures and
then utilize volumetric vector fields to simulate faulting in
the model [Fig. 1(a)]. In this way, we obtain a reflectivity
model with realistic folding and faulting structures. We further
convolve the generated model with a wavelet to simulate
synthetic seismic volumes.

As the conventional methods declared in the introduction,
a super-resolution seismic image owns a wider frequency
band than a native seismic image in general. According to
this principle, we convolve the generated reflectivity model
[Fig. 1(a)] with a high-frequency wavelet to obtain the 3-D
seismic volume [Fig. 1(b)] from which 2-D label images are
extracted. To generate the corresponding input training images,
we first convolve the same reflectivity model [Fig. 1(a)]
with a low-frequency Ricker wavelet to obtain a relatively
low-resolution seismic volume [Fig. 1(c)] where random noise
is further added to obtain a more realistic seismic volume
[Fig. 1(d)]. From the noisy and low-frequency seismic volume,
we finally extract the same 2-D sections and downsample
them as the input training images. In this way, we obtain
training image pairs with the same structures but different
resolutions.

Fig. 2(a) and (b) shows the frequency spectrum of
2-D seismic sections extracted from the automatically gener-
ated low-resolution [Fig. 1(c)] and high-resolution [Fig. 1(b)]
seismic volumes, respectively. We observe that the spectrum
[Fig. 2(b)] of a high-resolution seismic section shows a wider
frequency band with significant more high-frequency compo-
nents than the one [Fig. 2(a)] of a low-resolution section.
In generating the training data pairs of low-resolution (input)
and high-resolution (label or output) seismic images, the peak
frequency of the wavelets are randomly chosen, however,
we make sure the spectrum band of the high-resolution seismic
image is always wider than the one of the corresponding
low-resolution image. And the range of peak frequencies is
5–25 Hz. Using randomly varying peak frequencies for differ-
ent training data pairs is helpful to train a better generalized
model for different field data sets which typically show dif-
ferent peak frequencies.

In generating the input seismic data for training, we have
added random colored noise into the data as shown
in Figs. 1(d) and 3(b), where the added noise looks more
realistic than the simple white noise in Fig. 3(a). In order to
increase the diversity and generalization of the training data,
the signal-to-noise ratio (SNR) for each training sample is
randomly defined in the range of [4, 14].
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Fig. 1. From a folded and faulted reflectivity model (a), we compute two seismic volumes in (b) and (c) by convolving a high-frequency and low-frequency
Ricker wavelet, respectively. From the high-frequency volume, we extract 2-D slices (e) as training labels. In the low-frequency volume, we further add
random noise to obtain a noisy seismic volume (d) from which we extract 2-D slices (f) and then downsample them to obtain input training data.

Fig. 2. Amplitude spectrum of 2-D seismic sections extracted from
Fig. 1(c) and (b), respectively: (a) spectrum map of the seismic volume
convolved with low-frequency wavelets and (b) spectrum map of the seismic
volume convolved with high-frequency wavelets.

Fig. 3. Comparison of synthetic seismic images with different noise:
(a) synthetic image with white noise and (b) synthetic image with colored
noise.

To prepare training data sets, we must generate many pairs
of 2-D seismic images Igt and Iinput . Inline or crossline
2-D seismic sections, used as high-resolution images (Igt )
are extracted from 3-D synthetic seismic volumes with

Fig. 4. Experimental results on synthetic seismic data: (a) clean and
high resolution seismic section extracted from Fig. 1(b); (b) same section
extracted from Fig. 1(d); (c) input seismic section downsampled from (b);
and (d) recovered seismic section using our method.

high-frequency wavelets [Fig. 4(a)]. And the low-resolution
seismic images (Iinput) [Fig. 4(c)], used as input, are obtained
by downsampling the same 2-D sections by a factor of
2 [Fig. 4(b)] which are generated from the volumes with
random noise. We expect our network to upscale the input
downsampled image and broaden its frequency band like the
conventional methods which achieve the super-resolution by
using dense receivers and broad frequencies during the data
acquisition. In our experiment, we divided 600 of the total
800 3-D volumes to contribute training set, 75 volumes for
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Fig. 5. Network architecture used in our proposed method.

validation, 75 volumes for the test set. The rest 50 volumes
are retained to contribute the slices for fault detection. From
each 3-D volume, we extract two 2-D sections for generating
one of training/validation/testing bins. Our work aims at recon-
structing the high-resolution images Ioutput from low-resolution
images with noise Iinput . In particular, Ioutput is expected to
close to the original high-resolution images Igt .

B. Data Augmentation

Data augmentation is one of the most useful methods for
improving the performance of deep models. There are some
successful instances in geophysics [24]. In order to avoid using
a large memory footprint for training, we first crop the pairs
of 2-D seismic images into some small patches at random.
However, the information contained in a small patch is often
insufficient to recovery the details between Iinput and Igt [25].
Thus, we choose the size of the input seismic patches to be
96×96 to balance the above problems, and the corresponding
size of the high-resolution seismic patches is 192 × 192. In
addition, we add some simple geometric manipulation with
randomly horizontal flipping the pairs of patches to increase
the diversity of training data sets.

IV. ARCHITECTURE AND TRAINING DETAILS

The network of this article is a variant of U-net. To obtain
more realistic results, we use a MS-SSIM loss function [20] to
avoid the overly smoothed structural edges. Finally, we esti-
mate our method on synthetic data sets.

A. CNN Architecture

The network architecture used in our method is illustrated
in Fig. 5, which consists of three parts: a stand U-net,
a subpixel layer and several residual blocks. The U-net is
an encoder-decoder network and includes four downsampling
blocks and corresponding upsampling blocks. Each down-
sampling blocks consists of a max-pooling layer with kernel

2 × 2 and stride 2, two convolution layers with kernel
3 × 3, and each convolution layer is followed by a batch
normalization layer and a rectified linear unit (ReLU). The
number of feature channels are 64, 128, 256, 512, and 1024,
respectively, through four downsampling blocks. Upsampling
block is an opposite design with the downsampling block, and
it enlarges the feature size by a transposed convolution layer.
Then, we concatenate the output of the transposed convolution
layer with the feature maps from the downsampling block at
the same level. After that, the output is fed to two convolution
layers and the layers yield the same design as downsampling
except for the feature number.

The goal of introducing subpixel convolution layer [22]
is to conduct upsampling. As another way to increase the
resolution by a dense acquisition without spatial aliasing, we
want to simulate the methods to achieve high-resolution by the
subpixel convolution layer. Besides, the image size is small in
the main part of our network, i.e., the U-net. Thus, we can
reduce training time and save GPU memory. In practice,
if we remove the subpixel convolution layer and the input
size is 256 × 256, the training time will be two to three
times longer. Here, we first increase the feature channels by
convolution and then reshaping them to enlarge the resolution
of inputs. Unlike transposed convolution used in the first
part, the subpixel convolution layer provides more contextual
information through a larger receptive field, which is beneficial
for generating more realistic details [26].

The last part, i.e., the residual blocks learn more
high-frequency information and details from input to target.
Each residual block contains two convolution layers, and
each convolution layer is followed by a batch normalization
layer and a ReLU. Then, a skip connection covers the two
convolution layers. In practice, we achieve good performance
with just three residual blocks. When we removed these
three residual blocks, the peak signal-to-noise ratio (PSNR)
on the test set dropped from 29.068 to 28.803. It is more
obvious to observe the performance improvement by using
the residual blocks. Fig. 6 shows a field example using the
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Fig. 6. Comparison test in a field example: (a) result without the residual
blocks and (b) result with the residual blocks.

trained U-Net with and without three residual blocks. The
result with residual blocks shows fewer artifacts and more
recovered details. Finally, we use a convolution layer with
kernel 1 × 1 to reduce the number of feature channels to
match the ground truth.

B. Loss Functions

We train our network using a new loss function that com-
bines the �1 loss and MS-SSIM loss. Due to the advantage
in improving the performance and convergence over mean
squared error (MSE) or �2 loss [12], �1 loss has been widely
used for image super-resolution. Mathematically, �1 loss is
defined as

L�1 = 1

N

∑

i, j

|ISR(i, j) − IHR(i, j)| (4)

where N is the total number of pixels. In practice, however,
the network trained using only the �1 loss will generate
unsatisfying high-resolution images with smooth textures. The
reason is that �1 loss minimizes the only pixel-wise distance
between output and target and ignore the texture structures.
To tackle this issue, we introduce a more sophisticated loss
term derived from MS-SSIM, which is also used in computer
version tasks [20].

MS-SSIM, an assessment for image quality, is sensitive to
local structure variations and more appropriate for the human
visual system (HVS). It is an improved version of SSIM [27]
and can be mathematically defined as

SSIM(x, y) = [l(x, y)]α · [c(x, y)]β · [s(x, y)]γ (5)

where

l(x, y) = 2μxμy + c1

μ2
x + μ2

y + c1

c(x, y) = 2σxy + c2

σ 2
x + σ 2

y + c2

s(x, y) = σxy + c3

σxσy + c3
. (6)

Here, x and y are two images. μi , σi represent the mean
and the standard deviation of image i , σxy is the covariance
between images x and y. And c1, c2, c3 are three constants to
avoid the situations where the denominator is too small to be
stable. l(x, y), c(x, y), s(x, y) represent three measurements
between x and y: luminance or amplitude in seismic image,
contrast and structure, respectively. α, β, γ are the correspond-
ing weights of three measurements and have to be positive.

TABLE I

PSNR ON THE SAME TEST DATA SET BUT WITH
DIFFERENT LOSS FUNCTION WEIGHTS α

In general, we set c1 = 1 × 10−4, c2 = c3/2 =9 c1. And
MS-SSIM is defined as

MS-SSIM(x, y) = [
lM(x, y)

]αM ·
M∏

j=1

[
c j (x, y)

]β j
[
s j(x, y)

]γ j

(7)

where M is the scale. In generally, M is set as 5, α5 = 0.1333,
α = β = γ = [0.0448, 0.2856, 0.3001, 0.2363, 0.1333]. The
multiscale means that we measure the SSIM in different scales,
i.e., we first zoomed-out view the pairs by a factor 2 j−1, then
calculate each term of SSIM and finally multiply them together
with the corresponding weights α j , β j , γ j . We zoomed-out
view the image pairs by simply using an average pool layer.
It must be noted that the range of MS-SSIM values is not 0 to
1. Because the covariance σxy can be a negative value which
may lead s(x, y) to be a negative number. To modify it as a
loss function, we need to normalize it to 0 to 1, and we can
simply perform MS-SSIM = (MS-SSIM+1)/2 to achieve the
goal. A ReLU layer can also be used for the same purpose.
The higher the value of A, the closer the two pictures are.

To improve the perception quality of recovered images,
we combine the �1 loss and MS-SSIM loss and obtain a new
loss function defined as

LMix = α · LMS-SSIM + (1 − α) · L�1 (8)

where

LMS-SSIM = 1 − MS-SSIM(ISR, IHR) (9)

and α is the weight of loss function and we empirically set
α = 0.6. Table I shows the PSNR values on the same test
data set with different weights α. It shows that our network
achieves the best performance when α = 0.6, A field example
in Fig. 7 also visually demonstrates that α = 0.6 is the best
choice. When α = 0.6, the recovered seismic image yields
fewer artifacts and looks more realistic.

The comparison between �1 loss and mix loss is illustrated
in Fig. 8. The three seismic images are extracted from the
upper left region shown in Fig. 4 using different loss functions
and their corresponding ground truth. It is modestly that the
output of the mix loss [Fig. 8(b)] shows sharper discontinuities
near faults than the �1 loss [Fig. 8(c)] in faults. The mix loss
leads to realistic and perception results. This phenomenon is
suggestive where the areas are denoted by the red arrows.
For example, near the area highlighted by the left arrow in
the �1 loss result [Fig. 8(c)], the fault is smoothed out and
the reflections are continuous across the fault, which is untrue
compared to the ground truth [Fig. 8(a)]. This will mislead the
following seismic interpretation tasks such as fault detection.
By using the mix loss, we are able to better preserve the fault
discontinuities as denoted by the red arrows in Fig. 8(b).
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Fig. 7. Results (a)–(e) by using a loss function weight (α) of 0.3, 0.4, 0.5, 0.6, 0.7, respectively.

Fig. 8. Comparison between the ground truth (a), the result of the proposed mix loss (b), and traditional �1 loss (c). These subimages are extracted from
the upper left region shown in Fig. 4.

Fig. 9. Training record: (a) loss function values on training and vali-
dation data sets and (b) performance curves of PSNR on validation data
sets.

C. Training Details

As discussed in the section of generating training data, we
generated 1200 pairs of the 2-D image for training. And every
input seismic image and label seismic image is normalized to
[0, 1] by the following formula:

x∗ = x − xmin

xmax − xmin
(10)

where x∗ is the normalized seismic image, xmax and xmin are
maximum value and minimum value of each input seismic
image, respectively. We then preprocess all the seismic images
by data augmentation discussed before.

We train our model with ADAM optimizer [28] and set the
parameter β1 = 0.9, β2 = 0.999, � = 10−8. The learning
rate is initialized to 1e −4. We set batch size as 16 and totally
extract 16 × 1000 patch pairs from training data sets. We train
our network over 150 epochs. We provide the training details
in Fig. 9, where Fig. 9(a) reports the loss function values
on training and validation data sets; and Fig. 9(b) reports the
performance curves of PSNR on validation data sets. Although
the loss function and PSNR curves do not converge until nearly
100 epochs, it only takes us about 4 h to finish a training task
that works in NVIDIA Tesla V100.

Fig. 10. Three traces extracted from the same position where the vertical
lines shown in Fig. 4. The green, blue, and red curves, respectively, represent
the traces extracted from the input, output, and ground truth seismic images.

We first evaluate the performance of our CNN model on
synthetic seismic images, i.e., the test sets that are not involved
in training and validation. The experimental results are shown
in Fig. 4, where Fig. 4(a) is the pure seismic images with
high resolution used as ground truth, Fig. 4(c) and (d) are
the input noise seismic image with low resolution and the
output seismic image recovered by our CNN model respec-
tively. Compared with the low-resolution noise seismic image,
the recovered seismic image provides enhancing structural
features and sharper geologic edges, especially in faults and
seismic horizons. And the thin layers are recovered well even
if there are only some blurred traces almost invisible to human
eyes on the low-resolution image. In addition, the result also
offers an effect of denoising. It is obvious that the seismic
section between two seismic horizons of recovered images is
more smoothed and cleaner compared with the input seismic
images.

Furthermore, we compare the amplitude characteristics of
three traces and report the results in Fig. 10. These three
traces are extracted from the output seismic section (red) and
the corresponding pair of the low-resolution seismic image
(green) and the ground truth (blue) where the corresponding
color vertical lines. The waveforms of three curves are in
approximate agreement keeping the shape. But the red one
yields more details than the green curve. The ground truth
curve maintains similar characteristics with the output trace.
This characteristic is well manifested in the range of samples
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Fig. 11. Comparison between our method and BroadSeis: (a) 2-D native field seismic section; (b) result recovered by our method; and (c) result by BroadSeis.

Fig. 12. Comparison of Fig. 11 in detail: (a), (b), and (c) are three patches (the yellow boxes) extracted from Fig. 11.

0–50 of the curve, where many thin layers are covered by
random noise in Fig. 4(c). These details may be the faults
or thin layers that appear blurry or have a small change of
amplitude compared to surroundings in low-resolution seismic
images. In a words, the clean and high-resolution seismic
sections with enhanced faults and thin layers are generated
by applying the input seismic images to the CNN model, and
can facilitate subsequent seismic interpretation. Our method of
simultaneous super-resolution and denoising is highly efficient.
It takes only several seconds to process all 150 images, each
with a size of 128 × 128.

V. APPLICATIONS

We feed several field seismic images to the well-trained
model and make a comparison with a conventional method.
We also deploy the results of our CNN model into fault
detection to confirm the ability of our well-trained model.

A. Several Real Examples

Our CNN model achieves good effectiveness and gener-
alization on both synthetic and field seismic data sets even
if it is trained with synthetic seismic data only. To verify
the capability of the model, we feed some 2-D field seismic

images acquired at different 3-D surveys to the well-trained
CNN model. And the sampling interval for each example is
4 ms. Before applying the field seismic images, each image
is normalized as same as the synthetic data sets to make it
consistent with training. Besides, the dimension size of the
input seismic image is not fixed and is only required to be
dividable by 2t , or we need to resize the input seismic image
so that its dimension can be dividable by 2t , where t is the
downsampling times of the architecture. We use t = 4 in our
experiment.

Fig. 11 shows a real example where the native seismic
image [Fig. 11(a)] is directly captured from the paper of
BroadSeis [3]. Feeding this native image into our trained CNN
model, we obtain an improved image [Fig. 11(b)] where the
noise is effectively removed and the resolution of detailed fea-
tures (e.g., thin layers and small-scale faults) are significantly
improved. Our result [Fig. 11(b)] shows even more details than
the improved image [Fig. 11(c)] by the BroadSeis technique.
The BroadSeis requires more expensive acquisition costs and
computational costs for processing while our CNN-based
method requires no extra cost and takes only milliseconds to
compute the result shown in Fig. 11(b). Fig. 12(a)–(c) show
a zoomed-in view of the yellow boxes in the native image,
our result, and the BroadSeis image, respectively. From these
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Fig. 13. Experimental results of proposed method on field seismic data: (a), (b), and (c) are three field seismic sections; (d), (e), and (f) are corresponding
recovered results; (g), (h), and (i) are corresponding interpolation results (using bicubic). In particular, (b) shows large amplitude values (see the color bar at
the bottom) which are much different from the synthetic seismic sections used for training.

subimages, we can more clearly observe that our CNN-based
method [Fig. 12(b)] significantly enhances the detailed struc-
tures of thin layers and the faults with small throws (as denoted
by the red arrows). Those faults are relatively small-scale ones
but they certainly exist. They can be seen roughly in the native
seismic image but appear very blurry, while the image after
processing by our method provides a better view of those
faults.

Fig. 13 shows another three field examples, where
Fig. 13(a)–(c) are the three native field seismic images that
are acquired at different surveys. Fig. 13(d)–(f) are the cor-
responding results computed by our CNN-based method of
simultaneous super-resolution and denoising. Fig. 13(g)–(i)
are the corresponding seismic images obtained by upsampling
the native image through bicubic interpolation with a factor
of 2. The size of the image obtained by bicubic is consistent
with the output image of CNN. The interpolated images look
very similar to the native images, which indicates that the
conventional interpolation method is not helpful to improve
the resolution of details of the original images. Compared

to the native images (the top row of Fig. 13) and the corre-
sponding interpolated images (the bottom row of Fig. 13), our
results show much more clear structures with noise removed
and higher resolution of detailed structural and stratigraphic
features such as small-scale faults and thin layers. Three
subimages (Fig. 14) are extracted from the yellow box area
of the second field data in Fig. 13 to provide a detailed
comparison. Although the structural features and the amplitude
values in these field images are significantly different from our
synthetic training data, our trained CNN model still works well
as in the synthetic tests. This indicated that our CNN model,
trained with only synthetic data sets, is well generalized for
various field data sets.

Fig. 15 shows some seismic traces that are extracted from
the native images and our improved images in Fig. 13. Due
to the bottom row of Fig. 13 is just an interpolated result and
very similar to the native images, we do not provide the traces
of the three bottom images. The top subfigure in Fig. 15 shows
the traces of first field data shown in Fig. 13(a) and (c), and the
traces in the middle figure are extracted from the second data
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Fig. 14. Comparison in detail: (a), (b), and (c) are extracted from Fig. 13(b), (e), and (h) (the yellow boxes).

Fig. 15. Traces analysis of the field seismic images (blue) and the results (red)
of our CNN method shown in Fig. 13.

[Fig. 13(b) and (d)]. The traces in the bottom subfigure are
extracted from the third field data [Fig. 13(c) and (f)]. The
blue curves represent the native seismic image traces and the
red ones are the traces of our output images. Compared to
the blue curves (native images), the red curves (our results)
show similar waveform trends and characteristics but much
more details.

Spectrum analysis of the three field seismic data is illus-
trated in Fig. 16 where each frequency amplitude is averaged
over all the traces in a 2-D section. The blue and red
curves represent the amplitude spectrum of our output seismic
sections and the input sections, respectively. As we expect,
the frequency bands of our output seismic sections are wider
than the bands of native input seismic sections, especially
in high-frequency part. It must be noted that some of the
recovered detailed features are not necessarily true in the
results of our CNN, especially in the areas with quite low
data quality, such as the lower left area of Fig. 13(a), where
the results are more likely to contain artifacts.

B. Fault Detection

Fault detection is one of the most important tasks in
seismic interpretation as faults often indicate the locations of
petroleum reservoirs. The experiment on synthetic and field
data shows fault detection can be significantly benefited from
our CNN method.

We first apply fault detection on 100 synthetic 2-D sections
where we know the ground truth of the faults for comparison.
Fig. 17(a) shows true faults overlaid on the high-resolution

seismic label image. Fig. 17(b)–(d) show the fault maps
computed from the seismic label image, the output seismic
image of our network, and the input low-resolution and noisy
seismic image, respectively, by using the same fault likelihood
scanning method [29], [30]. We observe that the fault maps
computed from our output seismic image [Fig. 17(c)] and
the seismic label image [Fig. 17(b)] show almost the same
fault features. Compared to the fault map computed from the
input noisy and low-resolution seismic image [Fig. 17(d)],
the fault map computed from our output seismic image shows
much cleaner and higher resolution fault features. To further
quantitatively evaluate the fault detection results, we compute
the curves of the pixel-wise accuracy and mean intersection
over union (MIoU) based on the ground truth of the faults
[Fig. 18(a)]. The MIoU is defined [31] as

MIoU = 1

k + 1

k∑

i=0

pii∑k
j=0 pi j + ∑k

j=0 p ji − pii

(11)

where the total number of classes is k+1, and pi j is the number
of pixels of class i inferred to belong to class j . To calculate
these two assessments, we assume the calculated faults are
accurate when the likelihood value is greater than a threshold.
These curves also show that fault detection in our output
seismic image (green curves) is significantly more accurate
than in the corresponding input seismic image (blue curves).
The accuracy of input increases as the threshold increases,
while the other two curves change very little. Because the fault
detected result of the input seismic image is greatly affected
by the noise. This indicates that our network is helpful for the
next step of seismic structure interpretation by simultaneously
improving the seismic resolution and removing the noise in
the seismic image.

We also illustrated a real example. Fig. 19(a) and (b),
respectively, show the fault detection results computed from
the native seismic image [Fig. 13(b)] and the correspond-
ing super-sampled and denoised seismic image [Fig. 13(e)].
Almost all the individual faults detected on our CNN results
are sharper than those computed on the native seismic image.
In addition, the fault features are less noise and more contin-
uously tracked. This means that the positions of the faults are
predicted more accurately after processing the seismic data by
using our CNN method.

In summary, we conclude that our method is indeed benefi-
cial to fault detection, and the images processed by our CNN
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Fig. 16. Spectrum analysis of three field seismic images.

Fig. 17. Comparison of fault detection: (a) true fault map overlaid on the
seismic label image; (b) fault likelihood map scanned from the high-resolution
seismic label; (c) fault likelihood map scanned from the output seismic; and
(d) fault likelihood map scanned from the input low-resolution and noisy
seismic.

Fig. 18. Quantitative evaluation of the fault maps computed from the
high-resolution seismic label image (red), recovered seismic image (green)
by our network, and low-resolution and noisy seismic image input to the
network: (a) pixel accuracy and (b) MIoU.

model does provide a better view of fault detection with clearer
and sharper fault features, and more accurate fault locations.

VI. CONCLUSION

In this article, we developed a novel CNN-based method
for achieving seismic image super-resolution and denoising
simultaneously. Due to lacking seismic labels in the real world,
we generate plenty of synthetic seismic sections to train our
CNN. And we use a loss function that combines the �1 loss and
MS-SSIM loss. That loss function can improve the perception
of quality and alleviate overly smoothed geological edges. Our
proposed method performs well on both synthetic and field
seismic data. Multiple examples demonstrate that our method

Fig. 19. Comparison of fault detection: (a) fault detection in the native
seismic image and (b) fault detection in the seismic image enhanced by our
CNN method.

is able to significantly enhance the detailed structural and
stratigraphic features (e.g., thin layers and small-scale faults)
in the input seismic images. Besides, a result of fault detection
confirms the effectiveness of our method.

However, our proposed method still has some limitations.
Some recovered detailed features need to be further verified
as some of them (especially those in the areas with low
data quality) may be artifacts. And the loss gap between the
training and validation may indicate slight overfitting. For
future work, we will investigate more details of the tradeoffs
between overfitting, training data set size, and architecture.
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Besides we want to leverage transfer learning to reduce the
gap between synthetic and field seismic data. By doing this,
the performance of field seismic data is expected to be further
improved.
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