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ABSTRACT

Seismic channel interpretation involves detecting channel
structures, which often appear as meandering shapes in 3D seis-
mic images. Many conventional methods are proposed for delin-
eating channel structures using different seismic attributes.
However, these methods are often sensitive to seismic disconti-
nuities (e.g., noise and faults) that are not related to channels.
We have adopted a convolutional neural network (CNN) method
to improve automatic channel interpretation. The key problem
in applying the CNN method into channel interpretation is the
absence of labeled field seismic images for training the CNNs.
To solve this problem, we adopt a workflow to automatically
generate numerous synthetic training data sets with realistic
channel structures. In this workflow, we first randomly simulate

various meandering channel models based on geologic numeri-
cal simulation. We further simulate structural deformation
in the form of stratigraphic folding referred to as “folding struc-
tures” and combine them with the previously generated channel
models to create reflectivity models and the corresponding
channel labels. Convolved with a wavelet, the reflectivity
models can be transformed into learnable synthetic seismic vol-
umes. By training the designed CNN with synthetic seismic
data, we obtain a CNN that learns the characterization of chan-
nel structures. Although trained on only synthetic seismic
volumes, this CNN shows outstanding performance on
field seismic volumes. This indicates that the synthetic seismic
images created in this workflow are realistic enough to
train the CNN for channel interpretation in field seismic
images.

INTRODUCTION

Channel interpretation in 3D seismic images is fundamental for
developing fluvial reservoirs (Bridge and Tye, 2000), hydrocarbon
reservoir characterization (Payenberg and Lang, 2003), well control
(Suarez et al., 2008), and ancient channel geomorphology (Renhai
et al., 2009). The main task in channel interpretation is to accurately
detect channel bodies in complex and noisy seismic volumes.
Because channels often appear as discontinuities in a seismic image
(Hale, 2009), many seismic attributes including semblance
(e.g., Marfurt et al., 1998; Hale, 2009), coherence (e.g., Marfurt
et al., 1999; Li et al., 2017; Wu, 2017), eigenstructure-based coher-
ence (Gersztenkorn and Marfurt, 1999), and sweetness (Hart, 2008)
are used to detect channels by highlighting seismic discontinuities.
Although these conventional methods can delineate channel edges,
other discontinuous features resulting from noise and stratigraphic

complexities are often highlighted as well, which degrades the per-
formance of the methods. Some attributes such as k2 curvature
(Wallet and Bradley, 2016) can extract the channel bodies but might
also be sensitive to other discontinuity features unrelated to chan-
nels. In addition, these methods using seismic attributes are typi-
cally restricted to detect only the channel edges rather than
highlight the channel bodies.
Recently, convolutional neural networks (CNNs) have shown

superior performance over conventional approaches on computer
vision tasks in natural images including object detection
(e.g., Girshick et al., 2014; Girshick, 2015; Ren et al., 2015;
Redmon et al., 2016), semantic segmentation (e.g., Ronneberger
et al., 2015; Badrinarayanan et al., 2017; Chen et al., 2017a), and
instance segmentation (e.g., Dai et al., 2016; He et al., 2017; Bolya
et al., 2019; Xie et al., 2019). Inspired by the application of CNNs in
computer vision, many researchers have introduced CNNs into
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geophysical problems including enhancement of seismic imaging
(Zhang et al., 2019), salt-body delineation (Di et al., 2018; Shi et al.,
2019; Di and AlRegib, 2020), and fault detection (Zhao and
Mukhopadhyay, 2018; Di et al., 2019; Wu et al., 2019).
Channel detection in 3D seismic images also can be considered

as a problem of image segmentation (Pham et al., 2019) by using a
CNN. However, the main limitation of applying a CNN in channel
interpretation is that training data sets are inaccessible. Wu et al.
(2019, 2020) suggest that synthetic training data sets with simulated
realistic structures can be used to effectively train CNNs for seismic
structural interpretation in field images. Therefore, we can use a
similar idea to create diverse structure models with structural defor-
mation in the form of stratigraphic folding and channel structures to
automatically yield rich training data.
To construct the structure model with geologic significance for

channel interpretation, we build meandering channel models based
on geologic numerical simulation. The key parameter in simulating
the meandering channels is the migration rate. Ikeda et al. (1981)
expound the basic theory of meandering and present the assumption
of the nominal migration rate. Howard and Knutson (1984) put for-
ward the adjusted migration rate and introduce the influence of up-
stream channel geometry to the simulation. Sylvester et al. (2019)
further simplify the calculation of the adjusted migration rate and
therefore improve the efficiency of simulating meandering channel
models. Based on the channel simulation method by Sylvester et al.
(2019), we propose a workflow to randomly build numerous me-
andering channel models and embed them into initial reflectivity
models with flat layers (see Figure 1). We further simulate lateral
compression to generate deformed “folded” anticlinal structures in
these reflectivity models with channels. Then, we convolve the
reflectivity models with Ricker wavelets and add random noise
to obtain synthetic seismic images. By randomly selecting the
parameters in the methods of simulating channels and folding struc-
tures, we are able to create numerous and diverse synthetic seismic
volumes with realistic structural and channel features. Because the
channels are well-defined in the simulation, we can automatically
obtain the corresponding labels (or ground truth) of the 3D channels
simulated in the synthetic seismic volumes.

With the automatically generated synthetic seismic images and
the corresponding labels, we are able to train a 3D end-to-end
CNN modified from the 2D DeepLabv3+ (Chen et al., 2018). This
CNN, trained on only synthetic seismic images, works well to ac-
curately highlight fluvial channel bodies in field seismic images,
whereas traditional methods can detect only channel boundaries.

METHODOLOGY

We propose a supervised 3D CNN method to automatically
detect channels in 3D seismic images. Training such a CNN re-
quires numerous training data set pairs including seismic images
and the corresponding labels (known control labels) of channels
in the images. We therefore first introduce a numerical workflow
to randomly generate numerous synthetic data sets with realistic
meandering channels and folded structures.

Channel simulation

To numerically simulate the morphology of channels, we start
with an initially straight channel (with some random noise), which
is then iteratively migrated to obtain a meandering channel. Howard
and Knutson (1984) introduce a simulation approach in which an
adjusted migration rate is first calculated and then the channel mi-
gration is iteratively simulated according to the migration rate. After
repeated iterations, the modeled channel evolves from the straight
form to a meandering one. By randomly choosing the parameters
for simulation, channels with a range of meandering rates can be
created automatically in batches to build structure models for the
next step of training a CNN.

Initialization

To build a channel model morphologically, we first simulate the
meandering pattern of the channel without considering the channel
width. We construct a rectangular coordinate system with x- and y-
axes, which, respectively, are parallel and perpendicular to the di-
rection of the initial channel. The z-axis is perpendicular to the X-Y

plane downward in the depth direction of the
channel. The channel can be simplified as its
centerline, which is represented by a series of
evenly sampled nodes or samples. The centerline
is divided into three parts: upstream, midstream,
and downstream. In this simulation, the upstream
and downstream stay the same whereas some
random perturbations are added to the midstream
to initiate the migration simulation. Because of
these perturbations, the channel model starts mi-
grating from a straight channel to a meander-
ing one.

Migration

The overall simulation process can be best
understood by depicting a single step of the mi-
gration. In the channel migration, it is necessary
to update the migration rate at each node of the
channel centerline. According to Nanson and
Hickin (1983), the local migration rate at each
node can be related to the bend radius and

Figure 1. Flowchart of the main tasks in our workflow. We embed meandering channels
into initial reflectivity models and simulate the structural deformation to generate geo-
logic models containing channels. Then, we convolve them with a Ricker wavelet to
build synthetic seismic images and the corresponding labels. Trained on these synthetic
images, our CNN can extract the meandering channels in field seismic images.
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channel width. With this consideration, the local migration rate
(also regarded as nominal migration rate) can be calculated as

R0 ¼ k1
W
R
; (1)

where R0 is the nominal migration rate,W is the channel width, R is
the bend radius of each node, and k1 is a constant migration rate.
Equation 1 indicates that the nominal migration rate is proportional
to the ratio of the channel width to the bend radius. However, the
channel simulation does not work well when the migration rate is
updated with equation 1 because not only the local curvature but
also the upstream geometry should be taken into consideration
while the meandering channel migrates. Howard and Knutson
(1984) propose a method to improve the calculation of the migra-
tion rate by taking the upstream channel geometry into account. In
this method, the adjusted migration rate can be computed as

R1ðsÞ ¼ ΩR0ðsÞ

þ Γ
�Z

∞

0

GðξÞdξ
�
−1
�Z

∞

0

R0ðs − ξÞGðξÞdξ
�
; (2)

where ξ is the distance upstream from s, Ω and Γ are the weighting
factors, and GðξÞ is a weighting function defined as

GðξÞ ¼ e−αξ; (3)

where α is an adjustable parameter (Sylvester et al., 2019). The term
α can be calculated as α ¼ 2kðCf∕DÞ, where k is a constant scaling
parameter, Cf is the Chezy friction factor, and D is the water depth.
Based on equations 1–3, the adjusted migration rate at each node

along the channel centerline is iteratively updated during the migra-
tion. The new location of a migrating channel node is computed
according to the updated migration rate:

� xiþ1 ¼ xi þ R1Δt dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2þdy2þdz2

p ;

yiþ1 ¼ yi − R1Δt dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2þdy2þdz2

p ;
(4)

where xi, yi, and zi represent the coordinates of
the migrating channel node at the ith iteration; Δt
is a time interval; and dx, dy, and dz are the first
derivation of x, y, and z, respectively, which can
be calculated with finite-difference methods in
discrete data. Using equation 4, the new channel
centerline at each iteration can be calculated
(Figure 2). Based on this workflow, the migration
of a meandering channel is iteratively updated as
shown in Figure 3.

Cutoff

Although the simulated channel continuously
migrates during the repeated iterations, the mi-
gration cannot continue endlessly because of
neck cutoffs. As rivers naturally meander, neck
cutoffs occur where the local bend intersects it-
self forming a new primary channel centerline.
To simulate the neck cutoffs, the bend of a me-
andering channel should be limited by a selected
cutoff distance. As shown in Figure 4, the mean-

dering channel is straightened at the extremely bended positions
that are identified by the selected cutoff distance.
Using this workflow, the geometry of the channel centerline can

be simulated by repeated iterations with the model modified from
the Python meanderpy (Sylvester et al., 2019). By randomly choos-
ing the parameters in the simulation, various channel models can be
generated for the next step of building structure models with rich
channel features.

Building labeled models

After generating various meandering channels, we then propose a
simple way to incorporate the channels into 3D layered models with
various folded structures. In this method, we begin with an initial
reflectivity model whose layers are all flat as shown in Figure 5. The
vertical reflectivity values in this model are randomly generated in
the range of [−1,1].
Based on our meandering channel simulation, various channel

styles can be created by choosing the parameters such as channel
width and depth. Then, we embed narrow and wide channels in the

Figure 4. The cutoff of the meandering channel. The bend of the channel reaches its
limit in (a). Neck cutoffs occur where the local bend intersects itself as in (b).

Figure 3. The migration of meandering channels. From (a) to (c), the channel gradually
meanders.

Figure 2. Based on equation 4, we simulate the channel migration
from the ith (the blue curve) to the (i+1)th iteration (the red curve).
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flat reflectivity model, where the depth and orientation of placing
each channel are randomly chosen. In our reflectivity models, the
reflectivity values inside the channel bodies are set to be relatively
higher than the background reflectivities. We then define relatively
high reflectivities within the channel bodies to obtain a reflectivity
model with various channel features as shown in Figure 5. The re-
flectivity value within each channel body is also randomly chosen
from a predefined range to increase the diversity of the simulated
models. We further follow the workflow proposed by Wu et al.
(2020) and simulate folding structures by shearing the layers and
channels vertically. The shearing can be decomposed into shift
fields S1ðX; Y; ZÞ and S2ðX; Y; ZÞ which, respectively, tilt and bend
the layers:

8><
>:

S1ðX; Y; ZÞ ¼ aX þ bY þ c0;

S2ðX; Y; ZÞ ¼ 1.5
Zmax

Z
P

k¼N
k¼1 bke

ðX−ckÞ2þðY−dkÞ2
2σ2

k ;
ð5Þ

where a, b, and c0 control the dipping structure, N is the number of
2D Gaussian functions, ðck; dkÞ means the center of each Gaussian
function, and σk and bk are the half-width and amplitude of the kth

Gaussian function, respectively. By using these shearing shift fields,
the initially flat reflectivity model (Figure 6a) in the original space
ðX; Y; ZÞ is mapped to the folding space ðX; Y; Z þ S1 þ S2Þ as
shown in Figure 6c. By following this method, we create a reflec-
tivity model with diverse folding structures and deformed meander-
ing channel features.

Building synthetic seismic images

The workflow proposed above creates the reflectivity model,
which contains various meandering channels as shown in Figure 6a.
Then, the structural deformation is simulated to generate folded
structures hosting the channel features. (Figure 6c). To generate
synthetic seismic images for training the CNN, we further convolve
the reflectivity model with a Ricker wavelet (with a randomly
chosen peak frequency) as shown in Figure 6e. To make the syn-
thetic seismic images more realistic, we add some random noise
into them to create random noise to add complexity to the seismic
volumes (Figure 6g).
To obtain the corresponding 3D model of the channel labels, we

apply exactly the same workflow to the corresponding stratigraphi-
cally flat channel model containing nonzero reflectivity values only
within the channel bodies (Figure 6b). We first apply exactly the
same vertical shearing as in Figure 6c to deform the channels (Fig-
ure 6d). We then apply the same wavelet as in Figure 6e to obtain a
channel image (Figure 6f), which displays channel features similar
to those shown in Figure 6e. However, this channel image (Fig-
ure 6f) cannot be directly used as the label image of channels be-
cause the steps of structural folding and convolving the wavelet
often introduce discontinuities and gaps into the channel features.
We therefore smooth the channel image (Figure 6f) to remove the
potential discontinuities and fill in the gaps. We then set a threshold
value to reset the smoothed channel image to obtain a binary image
(Figure 6h) with ones within the channel bodies and zeros else-
where. In this way, we are able to obtain a training data pair includ-
ing a 3D seismic image (Figure 6g) and the corresponding binary
label image (Figure 6h) of the channels.
By randomly altering parameters throughout the complete work-

flow, folded structures, and synthetic seismic images, we can gen-
erate numerous learnable synthetic seismic data sets for training the
CNN. In total, we generate 200 pairs of data sets for training our
CNN with Figure 7 showing four individual pairs. We observe that

each data set shows unique structural and chan-
nel features.

CNN for channel interpretation

Channel interpretation in 3D seismic images
can be considered as a 3D image segmentation
problem. Differing from conventional segmenta-
tion in 2D natural images, channel interpretation
requires us to achieve the volumetric segmenta-
tion of meandering channel bodies. Inspired by
DeepLabv3+ (Chen et al., 2018), we design a
3D CNN to highlight the channel bodies in
3D seismic volumes. Trained on only synthetic
seismic images and the corresponding labels, this
CNN can successfully identify meandering chan-
nels in synthetic and field seismic images.

Figure 5. We generate the reflectivity models with diverse channels
by combining the meandering channels with the initial models.

Figure 6. By adding folding structures to the initial reflectivity models of (a) flat layers
and (b) channels, we obtain (c and d) the corresponding folded models, which are further
convolved with a Ricker wavelet to obtain (e) synthetic seismic and (f) label images.
(g) Noise is added to the synthetic seismic image to make it more realistic, and (h) the
synthetic channel image is reset to a binary label image.
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CNN architecture

Figure 8 shows our 3D CNN architecture modified from Deep-
Labv3+ (Chen et al., 2018). This CNN is the latest release of the
DeepLab series, which has achieved excellent performance in the
field of natural image semantic segmentation. For example, Deep-
Labv3+ attains state-of-the-art performance on Cityscapes, which
consists of urban street scenes for semantic segmentation tests.
Recently, the encoder-decoder network has been widely used in

the semantic segmentation field (e.g., Ronneberger et al., 2015; Ba-
drinarayanan et al., 2017; Chen et al., 2018). Therefore, we use the
encoder-decoder module as the main architecture of our CNN. The
encoder module extracts the low-level and high-level features from
the input images. The decoder module concatenates low-level
features (local features with a small receptive field) into high-level
features (global features with a large receptive field) to recover the
sharp channel boundaries.
The encoder contains two modules: the deep convolutional

neural network (DCNN) and the atrous spatial pyramid pooling

(ASPP). In this work, we use ResNet-101 (He et al., 2016) as
the DCNN module to achieve the feature extraction from the input
image as shown in Figure 9. ResNet-101 mainly consists of a con-
volution layer, a max-pooling layer, and four ResBlocks with differ-
ent parameters. The convolution layer and the max-pooling layer
before the ResBlocks can reduce the size of the input images to
decrease the memory requirement and computational costs. He et al.
(2016) propose a two-layer building block and a three-layer build-
ing block called the “bottleneck.” These four ResBlocks, respec-
tively, contain 3, 4, 23, and 3 bottleneck blocks with different
strides of 1, 2, 2, and 1. The three-layer structure contains a
3 × 3 and two 1 × 1 convolution layers as shown in Figure 10. This
block can efficiently reduce the amount of calculations. Therefore,
we apply the bottleneck as the main body of ResBlock to obtain a
deeper neural network.
Following the DCNN module, the ASPP module (Chen et al.,

2017b) is constructed to further process the output of DCNN.
The ASPP module contains a pooling layer, a 1 × 1 convolutional
layer, and three 3 × 3 atrous convolutional layers with a sampling

rate of 6, 12, and 18, respectively (see Figure 11).
The atrous convolution can increase the receptive
field without losing the resolution. Based on the
combination of convolutional layers with multi-
ple sampling rates, the ASPP module can capture
the context of input images at different scales and
concatenate the feature maps with diverse dila-
tion rates. After the concatenation of different
feature maps, we apply a convolution layer to re-
duce the number of feature maps from 1280
to 256.
The decoder (below the horizontal dashed line

in Figure 8) receives two inputs. The first is the
low-level features extracted from the first Res-
Block in DCNN, which provides the detailed in-
formation. The second contains the high-level
features generated by ASPP, which provides
the semantic information. The decoder reduces
the number of the low-level features and upsam-

Figure 8. The architecture of our 3D CNN for volumetric channel segmentation in a 3D seismic image.

Figure 7. Automatically generated seismic images and the corresponding channel
labels.
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ples the high-level features by four times. After the upsampling, the
detailed low-level features and the semantic high-level features are
concatenated and then fed to a regular convolutional layer, which
reduces the number of feature maps from 304 to 2. Then, an upsam-
pling layer is applied to increase the size of the features by four
times to keep the size of the output consistent with the input. Fi-
nally, the decoder outputs a one-hot encoding which represents
the probability distribution of the channel structures and back-
ground.
To better evaluate the model performance, we compare our model

with a 3D U-Net model in Table 1. We also test the performance of

different normalizations using the same model. We prepare three
methods trained on the same training data sets to predict on the
same test sets. The results in Table 1 show that, although using the
same normalization method, the performance of DeepLabv3+ is
better than a 3D U-Net. The “Mean-Std normalization” is more
appropriate for this problem than the min-max normalization.

The training process of CNN

Based on synthetic seismic images and the corresponding labels,
we train the 3D CNN shown in Figure 8. The input sizes of training

data sets and labels for the 3D CNN are
128 × 128 × 128. Before feeding the training
data into the CNN, we normalize each seismic
image separately using the Mean-Std normaliza-
tion as follows:

x 0 ¼ x − μ

σ
; (6)

where μ and σ, respectively, are the mean and
standard deviation of input data x. This normali-
zation is more robust than the min-max normali-
zation, which is sensitive to the maximum and
minimum of the sample.
Considering that the channel detection in a 3D

seismic image is a binary segmentation problem,
we use the following widely used binary cross-
entropy loss function L to train our CNN:

L ¼ −
1

N

XN
i¼1

ðyi · logðpðyiÞÞ

þ ð1 − yiÞ · logð1 − pðyiÞÞÞ; (7)

where yi is the label of the ith voxel, pðyiÞ is the predicted prob-
ability of the ith voxel, and N is the number of samples.
Due to the extreme imbalance between the categories (the pixels

of the background are far more than those of the channel bodies in a
seismic image), we use a category-balanced cross-entropy loss in
our methods to improve the training processing. Before the calcu-
lation of loss, we estimate the number of pixels of channel and back-
ground to update the weight parameters. Then, we apply the weight
parameters to balance the loss of categories:

�
L¼− 1

N

PN
i¼1ðwi ·yi · logðpðyiÞÞþð1−yiÞ ·logð1−pðyiÞÞÞ;

wi¼Nbackground

Nchannel
;

(8)

where Nchannel is the number of pixels corre-
sponding to the channel label and Nbackground is
the number of pixels of the background. The
weight parameters wi can adjust the loss of the
channel category to balance the weights between
categories.
In this work, we apply the Adam optimizer

(Kingma and Ba, 2014) in the training process
to minimize the training loss and optimize the
network parameters. The learning rate is initial-

Figure 9. The DCNN module implemented with ResNet-101.

Figure 10. The three-layer bottleneck layer that contains one 3 × 3 and two 1 × 1
convolution layers.

Figure 11. The ASPP module, which can capture the multiscale
features of the channels.

Table 1. Comparison of different methods on test data sets.

Method Normalization Precision (%) Recall (%) mIoU (%) F1 score (%)

DeepLabv3+ Mean-Std 95.68 96.41 92.41 96.04

DeepLabv3+ Min-Max 95.00 95.38 91.19 95.36

3D-U-Net Mean-Std 95.53 96.20 92.08 95.86

Note: DeepLabv3+ with Mean-Std achieve better performance on Precision, Recall, mIOU, and F1 score
compared with the other methods.
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ized to 1 × 10−4. To better optimize the loss in the late training proc-
ess, we set a learning rate scheme that reduces the learning rate to
one tenth of the original when half of the epochs have been
computed.
In total, we use 200 pairs of synthetic training data sets (such as

those shown in Figure 7) to train our CNN. To further increase the
diversity of the training data sets and improve the generalization of
the CNN model, we augment the training data sets by rotating the
training data 0°, 90°, 180°, and 270°. around the vertical z-axis
(Figure 12). The loss curves on training (the blue curve) and
validation (the orange curve) data sets are shown in Figure 13.

APPLICATION

Evaluations against synthetic seismic data

The top row of Figure 14 shows four automatically generated
synthetic seismic volumes that are not included in the training data
sets. The middle row of Figure 14 shows the channel detections by
using our trained CNN. We observe that the detected channels
match well with the ground truth of the channels in the label images
(the bottom row). This suggests that our CNN modified from 2D
CNN is qualified to achieve the volumetric channel segmentation
in 3D seismic volumes.

Evaluations against field seismic data

Considering the larger data size of field seis-
mic images and the memory limitation, we divide
the field data into smaller blocks and interpret
them separately. To avoid the stitching effects
(the effect on restoring small blocks to raw data)
and the boundary effect (the effect on prediction
on the boundary), we set an overlap (as the tran-
sition region) between neighboring blocks and
average the predictions with the overlap.
To further test the performance of this work-

flow, this 3D CNN is applied to a 3D seismic
image from the Atchafalaya Bay as shown in
Figures 15 and 16 (Triezenberg et al., 2016).
We choose two vertical slices with different
depths to show the results in Figure 16. The me-
andering channel bodies in this field seismic data

Figure 12. The process of data augmentation. (a–d) Samples rotated by 0°, 90°, 180°, and 270° around the vertical z-axis, respectively.

Figure 13. Loss curve of ChannelSeg3D using Mean-Std normali-
zation on the training data sets.

Figure 14. Our CNN works well in the synthetic seismic images.
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are offset by multiple faults (as noted by the red
curves in Figure 16) that are characterized by
seismic discontinuities in the vertical and hori-
zontal slices. Faults obscure and degrade the
morphological characteristics of the buried me-
andering channels and therefore pose challenges
to the channel delineation in the seismic image.
However, our 3D CNN can still infer the branch-
like meandering channels from the complex con-
textual information. Figure 16 shows a magnified
view of the same example with different slices
where the channels are also clearly highlighted,
including those subtle channels with small
widths and vertical thicknesses. This example
shows that this CNN can effectively identify
the channel bodies that are complicated by faults.
In a second example, we apply our 3D CNN to

the field seismic image from offshore Louisiana
as shown in Figure 17. The first row of Figure 17
shows that our CNN can sharply delineate the
complex channel structure that is only partially
visible on the seismic slice. The second row of
Figure 17 shows the detection of meandering
channels which are difficult to interpret directly
on the seismic image.
Although trained on synthetic data sets, our

3D CNN can be generalized well to detect chan-
nels in field seismic images. This indicates that
the structural and channel features simulated in
the synthetic data sets are close to the actual geo-
logic features apparent in the field seismic im-
ages. In addition, our CNN-based method is
robust for highlighting channels that are compli-
cated by faults and noise as shown in these ex-
amples. We further demonstrate this by
comparing the CNN-based method with a con-
ventional coherence method.

Figure 15. An overview of the work area in the Atchafalaya Bay. (a) A horizontal sec-
tion in field seismic data from the Atchafalaya Bay. (b) The predictions using our CNN.
As the blue arrows indicate, the channels are extracted by our CNN.

Figure 16. Field seismic images from (a and c) offshore Louisiana and (b and d) their
corresponding predictions. Faults in these seismic images are noted by the red curves.

Figure 17. Two horizontal sections of field seis-
mic images from (a and c) offshore Louisiana
and (b and d) their corresponding predictions us-
ing our CNN. The blue arrows indicate the chan-
nels delineated by CNN.
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The contrast between CNN and the conventional
method

Figure 18b shows the channel predictions in the field seismic im-
age (Figure 18a) with the CNN trained by only synthetic data sets.
Compared to channel detection by coherence (Figure 18c), our
CNN method can delineate the channel boundaries more sharply
and highlight the channel bodies more accurately in the seismic im-
age. In addition, our CNN can extract diverse channels with various
sizes and shapes. However, the coherence-based method failed to
detect the wide channels as denoted by the cyan arrows. Moreover,
our CNN is more robust to noise and the miscalculation of other
structures while the conventional coherence mistakes faults as chan-
nels as denoted by the pink arrows in Figure 18c.
We extract the target segment of this channel body for better ob-

servation in Figure 19. Figure 19a and 19b shows the position of
this channel denoted by the cyan arrow in Figure 18. Figure 19c–19f
shows the vertical section of this channel body. This figure shows
that our CNN can highlight the wide channel bodies with a finite
thickness.

DISCUSSION

Two field examples indicate that channel forms simulated in our
proposed workflow are geologically reasonable to enable a CNN to
achieve accurate channel interpretation. Although trained on the
synthetic seismic images, the CNN can attain an outstanding per-
formance in the field seismic images. However, further study shows
that this method does not work well on some field seismic images
that contain large-scale incised channel structures. We suppose that
this problem is associated with training data sets rather than being a
limitation of the CNN. This work mainly focuses on the simulation
of the meandering channel models whose structural features are sig-
nificantly different from the incised channel structures. Therefore,
this CNN cannot sufficiently delineate the geologic characteristics
of incised channels from meandering aggrading channels. This in-
spires us to further improve our simulated workflow and add the
incised channel models in our synthetic training data sets.
Our method works well to identify channel bodies from 3D seis-

mic volumes but still cannot distinguish the channel migration at
different stages. Multistage channel interpreta-
tion is a highly challenging task even for manual
interpretation. The CNN is a potentially effective
way to solve this challenging problem by consid-
ering it as an instance segmentation problem. We
can use the same simulation workflow to gener-
ate synthetic training data sets. Different from us-
ing a binary label image in this paper, we need to
define a multiclass label image to indicate chan-
nels at different stages.
In our workflow, we have simulated only sim-

ple and small-scale channels. We currently
approximate the channel structures and fill the
channel body in the same sedimentary cycle with
the same impedance. To simulate larger and more
complicated channel features, we need to set
more complicated impedance/reflectivity pat-
terns within the channel bodies (e.g., spatially
varying).

Figure 18. In a 3D field example from (a) offshore Louisiana,
(b) our CNN method can more accurately detect narrow and wide
channels and (c) is more robust to noise and faults than the conven-
tional coherence. Faults and wide channels are marked with pink
and cyan arrows, respectively.

Figure 19. Field seismic images from (a, c, and e) offshore Louisiana and (b, d, and
f) the corresponding predictions using our CNN. The horizontal and vertical slices of the
channel structures are denoted by (a and b) green arrows and (c and d) purple arrows.
The channel body in the vertical section is highlighted in yellow in (e and f).
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Due to the complexity and diversity of field data, there is still a
gap between the synthetic and field seismic data sets. This indicates
another aspect in which our method can be improved. Improve-
ments on synthetic seismic images can make the predictions more
stable and robust. In future investigations, it might be possible to
apply transfer learning in channel interpretation to reduce the differ-
ence between the training and field seismic data.
Considering the memory limitation in training a 3D CNN with

larger 3D data sets, we can replace the deeper ResNet-101 with
ResNet-50 in the DCNN module which, however, may degrade
the performance of the network. This is a trade-off between the
graphic processing unit memory and performance.

CONCLUSION

We have presented a workflow to automate the channel interpre-
tation in 3D seismic volumes by using a CNN, in which the channel
interpretation is considered as a volumetric segmentation problem.
The designed CNN is modified from DeepLabv3+, which was used
for semantic segmentation in the 2D images. We use ResNet-101 as
the backbone network to extract the features. To adapt the network
to this problem, we replace the 2D layers with 3D ones and apply
the trilinear interpolation in the upsampling operation.
The main limit in applying the CNN for the channel interpreta-

tion is the absence of training data sets. To solve this problem, we
have proposed a numerical workflow to simulate realistic meander-
ing channels and integrate them with simulated structural deforma-
tion to impart folded structures into channel-hosted models. By
randomly adjusting the parameters in the simulation, we can auto-
matically create numerous structure models with various channels
and folded structures. From the structural models, we further auto-
matically generate synthetic seismic volumes and the corresponding
channel label volumes to train our CNN for channel interpretation.
Although trained on only synthetic seismic volumes, the CNN

works well to detect the meandering channels and extracts channel
bodies from field seismic images. This suggests that the meandering
channels simulated in numerical simulations are realistic enough for
CNN to learn the attributes of channel forms and achieve realistic
channel interpretation.
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