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A Multi-Task Learning Method for Relative
Geologic Time, Horizons, and Faults With Prior

Information and Transformer
Jiarun Yang , Xinming Wu , Associate Member, IEEE, Zhengfa Bi , and Zhicheng Geng

Abstract— Horizon extraction and fault detection are essential
in seismic interpretation and are closely related to each other.
Most existing methods tend to deal with these two tasks indepen-
dently, and may not work well in interpreting seismic images with
complex geologic structures. We propose a multi-task learning
(MTL) network with two branches to extract all horizons and
detect faults simultaneously by estimating a relative geologic time
(RGT) map as well as computing a fault map. These two branches
share training datasets, feature maps, and network parameters
during the training. The RGT estimation branch, constructed
with a transformer architecture, is more lightweight compared
with previous convolutional neural network (CNN) methods
but provides a larger and structure-oriented receptive field to
adaptively capture global structural information for estimating a
globally optimal RGT map. The fault detection branch is a simple
CNN, which merges feature maps shared by the transformer and
the derivatives of the estimated RGT to compute a fault map. The
fault detection branch provides boundary control for the RGT
estimation branch, while the latter provides global constraints for
the former to improve its robustness to noise. Note that our RGT
estimation by globally fitting all structures in a seismic image is
a volumetric horizon interpretation method with which we are
able to obtain a whole volume of horizons, all at once, by simply
extracting contours of the RGT map. In our method, we further
enable convenient human interactions by integrating manually
interpreted horizons (or horizon segments) into the network,
which imposes expert knowledge on the network to estimate
reasonable RGT results from seismic images with complex fault
systems, unconformities, and poor data quality. Moreover, when
using 3-D horizons as constraints, we are able to decompose
the computational expensive 3-D RGT estimation from a seismic
volume into independently parallel 2-D estimations slice by
slice and combine them to obtain a laterally consistent 3-D
result.

Index Terms— Fault, horizon, multi-task learning (MTL), rel-
ative geologic time (RGT), transformer.
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I. INTRODUCTION

EXTRACTING horizons and detecting faults from a
seismic image are two important tasks of seismic inter-

pretation. Horizons can be used for ancient sedimentary envi-
ronment analysis [1], structural modeling [2], and stratigraphic
interpretation [3]. Faults can be used for structural model-
ing [4], well location screening [5], and tectonic analysis [6].

The discontinuities of reflections are typical features of
faults in a seismic image. Therefore, different methods are
proposed for fault detection to highlight the reflection discon-
tinuities in a seismic image by computing additional attributes,
such as semblance [7], coherency [8], [9], [10], variance [11],
curvature [12], and fault likelihood [13], [14]. However, these
methods based on reflection discontinuities are sensitive to
noise and other structures similar to faults in a seismic image.
Therefore, some methods are proposed to further enhance
fault-related features and suppress the noise in the attribute
images, such as ant tracking [15] and optimal surface vot-
ing [16]. Some other authors [17] proposed to improve fault
detection by using prior horizon information. Fault detection
is also important for horizon interpretation. When we interpret
the horizons on both sides of faults, the fault detection maps
can provide boundary constraints.

Interpreters interpret horizons by tracking reflections in a
seismic image. Because manual interpretation is time con-
suming, numerous automatic and semiautomatic methods are
proposed for improving the interpretation efficiency. These
horizon extraction methods are mostly based on seismic
instantaneous phase unwrapping [18], [19], seismic waveform
classification [20], [21], [22], and seismic local slopes [23],
[24], [25], [26], [27], [28], [29], [30]. These methods can
extract the horizon correctly along continuous reflections in
the seismic image, but may not work well in tracking the
reflections across faults. To solve this problem, some methods
[31], [32] remove faults from a seismic image by com-
puting fault locations and fault displacement vectors. Some
authors [33] use manually picked points on both sides of faults
to constrain the process of horizon extraction.

Estimating a relative geologic time (RGT) volume or map
from a seismic image provides a volumetric method of extract-
ing all horizons in the seismic image [18], [19], [34], [35].
In the RGT volume, every point is assigned an RGT value,
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Fig. 1. We propose an MTL network to simultaneously extract all horizons and faults from a seismic image and interpreted horizon segments. The network
includes RGT estimation and fault detection branches, which are related to each other.

and RGT values will increase with depth in general. The
contours extracted from an RGT volume represent seismic
horizons, and faults and unconformities are highlighted by
discontinuities in the RGT volume. An RGT map can be also
applied in sedimentologic interpretation [36], geologic body
detection [36], structural implicit modeling [37], and missing
well-log data prediction [38].

For RGT estimation, a straightforward but laboring method
is to track or pick horizons and interpolate these horizon
surfaces to obtain an RGT volume [39], [40]. Although the
estimated RGTs can strictly fit the interpreted horizon surfaces,
the RGT surfaces interpolated among these horizons are hardly
estimated well. To solve this problem, the methods based on
phase unwrapping [18], [19] are proposed to estimate RGT
by unwrapping the seismic instantaneous phase. Fomel [41]
uses a slope-based method to pick horizons and estimate RGT
maps by using plane-wave destruction and setting seed points
to further follow the local slopes.

In recent years, convolutional neural network (CNN)-based
methods have successfully applied in seismic data process-
ing [42], [43], seismic interpretation [44], [45], [46], and
seismic inversion [47], [48]. Some methods based on CNN
are proposed to estimate RGT maps from seismic images and
obtain the structural information (e.g., faults and horizons)
from the predicted RGT images [49], [50]. Geng et al. [49]
use a 2-D end-to-end CNN for RGT estimation from seismic
images. From the predicted RGT map, all horizons in the
seismic image can be extracted efficiently by extracting RGT
contours. Bi et al. [50] consider RGT estimation and fault
detection to be related to each other, but deal with these
two tasks separately. They use one 3-D end-to-end CNN to
compute an RGT volume from a 3-D seismic volume and
use another 3-D end-to-end CNN to detect faults from the
predicted RGT volume. Although numerous methods have

been proposed for both tasks of the seismic horizon and fault
interpretation, most of the existing methods deal with them as
two independent tasks. In addition, most of the existing meth-
ods may not be able to robustly estimate reasonable results
from seismic images with complex fault systems, unconfor-
mities, and poor data quality. Therefore, it is still necessary
to incorporate prior structural information into the horizon
and fault interpretation methods, especially the deep-learning-
based ones, to improve their robustness. Vision transformer
(ViT) [51] is the first work to use self-attention in computer
vision, and it achieved state-of-the-art performance in image
classification. Unlike the traditional CNN architecture, the
transformer architecture excels in capturing global features.
Now, transformer architecture is obtaining greater attention
as a viable block used in geophysics, such as earthquake
detection [52], [53], deblending [54], and reservoir parameter
prediction [55].

In this article, we propose a multi-task learning (MTL)
network (Fig. 1) with the constraints of prior structural infor-
mation to simultaneously compute an RGT map and a fault
image from a seismic image as well as interpreted horizons.
The MTL network consists of two coupled branches of RGT
estimation and fault detection. We construct the first branch
of RGT estimation with an encoder–decoder architecture.
The encoder uses a transformer backbone to capture global
structural information. The decoder uses a CNN backbone to
extract local structural features and employs selective feature
fusion (SFF) modules to merge both global (concatenated from
the encoder) and local information for the RGT estimation.
Compared with the previous CNN method [49], our RGT esti-
mation branch is more lightweight but provides an adaptively
anisotropic receptive field to help our network build RGT
maps based on the structural information in seismic images.
In this branch, the inputs include a seismic image and a
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Fig. 2. Workflow of training our MTL model. In every epoch, the horizon segments and the corresponding mask are randomly selected from the RGT label,
which can improve the diversity of training data. The RGT estimation network includes a transformer backbone and CNN, and the fault detection network is
a simple CNN.

map containing interpreted horizon segments with preassigned
RGT values, and the output is an estimated RGT map. The
interpreted horizon segments with RGT values are used as one
of the inputs and as a constraint in loss functions, which helps
guide our network to estimate reasonable RGT results, espe-
cially in complicated cases. Our method allows inputting the
prior constraints of incomplete horizons or even sparse horizon
points that may be only interpreted near the complex structure
areas (e.g., both sides of faults, unconformities, and geobody
boundaries), without the need of using complete horizons as
constraints. In this way, we can build a convenient interaction
between interpreters and our network, where interpreters can
modify the input horizon segments in real time to update RGT
and fault estimations until reasonable results are obtained.
Moreover, when using 3-D horizons as constraints, we are able
to estimate 2-D RGT maps slice by slice in a 3-D seismic
volume and further merge them to obtain a full 3-D RGT
result with low computational time and memory. The contours
extracted from an RGT volume represent seismic horizons, and
we can obtain a whole volume of horizons from the result of
the RGT estimation branch.

The second branch of fault detection is a simple end-to-end
CNN architecture whose inputs consist of the derivatives of
the RGT volume and feature maps shared from the encoder

of the RGT estimation branch. With shared feature maps and
network parameters, these two branches can provide controls
for each other. In the process of forward propagation during
the training, the first branch can transfer feature maps with
sufficient seismic structural information and obvious fault
structures to the second branch. These feature maps, shared
by the first branch of RGT estimation, help improve the
robustness of the fault detection branch to obtain more clear
and more continuous fault maps. In the process of backward
propagation during the training, the loss in the fault detection
branch can provide boundary constraints for the first branch
of RGT estimation to obtain sharper results near faults.

In summary, our contributions to this article are as follows.
1) We propose an MTL learning method for RGT estima-

tion, horizon extraction, and fault detection, in which we
use a lightweight transformer architecture to capture the
global structure patterns in a seismic image.

2) In addition to seismic data, we propose to add prior hori-
zon constraints to guide the network to obtain reasonable
RGT and fault images in complicated cases.

3) In order to implement the 3-D RGT estimation task
accurately and efficiently, we decompose the 3-D prob-
lem into independently parallel 2-D estimations slice
by slice where we use 3-D horizons as constraints to
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Fig. 3. Proposed MTL network architecture consists of two branches of RGT estimation and fault detection. The RGT estimation branch contains a transformer
encoder to capture the global structural relationships from the input (horizon, seismic, and seismic) and a CNN decoder to compute the local information and
fuse both global and local information by the module named SFF. The fault estimation branch is a simple end-to-end CNN architecture, and the inputs of this
branch are the second derivatives of the RGT prediction and the feature maps from the transformer encoder of the first branch, which can provide clear fault
features and more detailed seismic structural features, respectively.

maintain the lateral consistency of the independent 2-D
estimations.

II. FRAMEWORK OF MULTI-TASK LEARNING

We use an MTL network (Fig. 2) with a transformer
backbone and a simple end-to-end CNN to compute RGT
and fault maps from seismic images and horizon segments.
To integrate expert knowledge into our network, we use
horizon segments with preassigned RGT values as the input of
our network and the constraints of loss functions in the RGT
estimation branch. We use the Dice loss to solve the highly
imbalanced distribution of samples for fault detection. Finally,
we quantitatively evaluate the estimated results by comparing
them with manual interpretation.

A. RGT Estimation

Fig. 3 shows more detail of our MTL network architecture.
The branch of RGT estimation is modified from a network
with transformer blocks [56] named global–local path net-
works (GLP). The inputs of this branch are a single seismic
image and horizon segments, and the output is an RGT map.
The inputs are embedded as patches that are fed into the
transformer block. The transformer block includes multiple
sets of an efficient self-attention module, the feed-forward
network (FFN), and a patch merging layer. The self-attention
module can capture vertical and horizontal long-range struc-
tural information, and we consider this character beneficial
for RGT estimation that requires globally fitting structural
features in a seismic image. The vertical direction features in
a seismic image represent the relative relations of layers, and
the horizontal direction features in a seismic image represent
the continuity of each layer. The FFN module provides posi-
tional information for the transformer block. Because of the

patch merging layer, the encoder part can generate multi-scale
features, which are also used in the decoder. Through four
transformer blocks, we can obtain a multi-scale feature map
with a size of (H)/(2i+1)× (W )/(2i+1)×Ci (i ∈ {1, 2, 3, 4}).

In the lightweight decoder, we aim to obtain meaningful
local information and integrate it with global information
from the encoder with skip connections. The channels of
input features from the encoder are reduced into 64 with
a 1 × 1 convolution filter to decrease the computational
complexity. Next, we use an upsampling layer to enlarge the
size of the feature map from (H)/(32) × (W )/(32) × 64 to
(H)/(16) × (W )/(16) × 64. Then, we use an SFF with
an attention mechanism to select and fuse global and local
features.

The structure of SFF is shown in Fig. 4, where first use
1 × 1 convolution filter to reduce the dimensions of global
features to 64, which is equal to the dimensions of local
features. Then, these two-part features are concatenated with
the size of (H)/(16)×(W )/(16)×128. Next, two convolution
modules are used to integrate information from these features.
After the information integration, we obtain two attention
maps from a convolution layer and a sigmoid layer. The two
maps represent what the local features and global features are
focusing on. In the attention map of global features [Fig. 4(b)],
the areas of horizons and faults appear as larger values in
the attention maps of global and local features, respectively.
This is consistent with our expectation that horizons represent
global relationships and faults represent detailed information.
Finally, the two maps are multiplied with original global and
local features, and are further added together to obtain a hybrid
feature.

After three SFF modules and four upsampling layers,
we obtain an H × W × 1 feature map which estimates
the vertical derivative of an RGT map. We further integrate
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Fig. 4. (a) Structure of the SFF module. (b) Attention map of global features. (c) Attention map of local features.

this feature map in the vertical direction to obtain a final
RGT map. The reason why we design such an intermediate
layer of integration instead of directly outputting an RGT
map in our network is that the integration will accumulate
potential prediction errors and amplify the loss misfit during
the training, and it can help our network learn RGT features
better. In Section IV, we use examples to demonstrate the
advantage of the integral process.

B. Fault Detection

We use a simple CNN (button part in Fig. 3) to detect
faults by the shared features from the RGT estimation branch.
First, we observe that fault features are implicitly indicated
as discontinuities in the estimated RGT map. Therefore,
we calculate the second derivatives (Uxx and Uyy) of the
predicted RGT map to obtain features for highlighting faults.
In the fault detection network, the two derivative features are
used as inputs followed by one convolution block and a max
pooling layer with stride 4. The convolution block includes
two sets of a 3 × 3 convolution layer and an ReLU activation.
As shown in Fig. 3, the outputs of the first convolution and
max pooling layers are eight feature maps containing obvious
fault structures. These feature maps computed only from the
RGT map show clear fault structures in global scales but
may miss detailed features of small-scale faults in the original
seismic image. Because the transformer encoder of the RGT
estimation branch can extract meaningful features from the
seismic image, we merge the output feature maps of the first
and second transformer blocks into the encoder of the fault
detection branch. Then, we use two convolution blocks and
one max pooling layer with stride 2 to obtain the other multi-
scale feature maps in the encoder of the fault detection. In the

decoder part of the fault detection, we use three convolution
blocks, three 2×2 upsampling layers, and two concatenations
with feature maps from the encoder to restore the original
resolution as well as fuse fault features between the encoder
and decoder. A fault probability map is finally computed,
through a 1×1 convolution layer followed by a sigmoid layer.

C. Loss Function

1) RGT Loss: During the training process, the RGT estima-
tion is supervised by two loss functions based on the known
horizon segments and RGT labels, respectively. We expect
that the estimated RGT values at each known horizon segment
should be exactly the same. We impose a such constraint on the
RGT prediction during the training by defining the following
loss LH:

LH =

N∑
i=0

Mi∑
j=0

(yi, j − ȳi )
2 (1)

where N is the number of horizon segments, and M is the
number of points at each horizon. yi, j represents an RGT value
estimated at the j th point of the i th horizon, and ȳi is the
average of the RGT values estimated at the i th horizon. In this
loss measurement, we do not care about specific RGT values
estimated at the known horizon segments, and we only make
sure the RGT values estimated at each horizon are identical.
With the known positions of the horizon segments, this loss
provides a self-supervision during the training.

Another loss function supervising the RGT estimation is
based on RGT labels and we define it with the structural
similarity (SSIM) metric [57]. SSIM has been widely used
in the regression problem, such as super-resolution [58],
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depth estimation [59], and image restoration [60]. Compared
with pixel-wise measurements, such as MSE or MAE, SSIM
focuses more on the structural information. Our RGT map is
a combination of geological structures, such as horizons and
faults. Therefore, we use the criterion based on multi-scale
SSIM (MS-SSIM) as the second loss function in the RGT
estimation branch, and MS-SSIM can be written as follows:

MS-SSIM(x, y) = [lM(x, y)]αM
·

M∏
j=1

[c j (x, y)]β j [s j (x, y)]γ j

(2)

x and y are two images that we want to evaluate. With
M scales of one image, this method can measure image
features at different resolutions. This measurement mimics the
process of seismic structural interpretation by geophysicists
or geologists who typically zoomed-in view and zoomed-out
view the seismic image to observe the structures in different
scales. In the RGT estimation problem, l, c, and s represent the
measurements of RGT values, a sharp change in an RGT map,
and relative relationships among the contours (corresponding
to horizons in a seismic image) in an RGT map, respectively.
We calculate the SSIM in one part of an image, and we
slide an 11 × 11 Gaussian window pixel by pixel to compute
the mean SSIM of all local images. In addition, we replace
the predicted RGT values with ground truth values at the
horizons segments before calculating this MS-SSIM loss.
These replaced values, if consistent with the predicted ones,
will affect the surrounding pixels by applying the Gaussian
window which makes the network more sensitive to the input
horizon segments. The range of SSIM is from 0 to 1, and the
loss function of MS-SSIM can be written as follows:

LMS-SSIM = 1 − MS-SSIM(x, y). (3)

The total loss function for RGT estimation is a hybrid one
defined as follows:

LRGT = (LMS-SSIM + LH)/2. (4)

2) Fault Loss: In the fault detection branch, we consider it
to be a binary segmentation problem. Binary cross-entropy
(BCE) is a common loss function in binary segmentation
problems, which can be written as follows:

LBCE = −

i=N∑
i=1

yi log pi −

i=N∑
i=1

(1 − yi ) log (1 − pi ) (5)

where N represents the number of points in the fault image.
yi represents the positive label and pi represents the prediction
possibility, which is calculated by the sigmoid layer in the
network.

BCE cannot work well in the dataset with an imbalanced
distribution of positive and negative samples. The positive
(fault) samples are much less the negative (non-fault) sam-
ples in a fault image [44]. When training with the com-
mon BCE loss, the network can easily make only negative
predictions everywhere to minimize the training objective.
Several loss functions have been proposed in recent years
to solve this problem. The dice coefficient score (DCS) [61]
is a measurement used to evaluate the similarity between

prediction and label and is widely used in the task with an
imbalanced training dataset. DCE can be written as follows:

DCS = 2 ×
| P ∩ G |

| P | + | G |
(6)

where P and G denote the prediction and ground truth,
respectively. | P ∩ G | represents the intersection of P and
G. | P | and | G | represent the pixel number of P and G.
The range of DCS is from 0 to 1, and the larger the value is,
the more similar prediction and label are. We define the loss
function for fault detection based on the DCS as follows:

LFault = 1 − DCS. (7)

Finally, the total loss function of training the MTL network
can be written as follows:

LTotal = (LRGT + LFault)/2. (8)

D. Evaluation Metric

We propose a metric to measure the RGT estimation,
which is similar to the one discussed in [50], and call this
metric horizon extraction error by RGT values (HEERV).
In calculating the metric, we first uniformly select several
RGT values Ri and extract the corresponding contours from
the RGT label. Then, we compute the average values R̃i

of the RGT values estimated at the extracted contours and
further extract the corresponding contours of R̄i from the
estimated RGT map. Finally, we compute the vertical distances
between the contours extracted from the RGT label and the
predicted RGT map. The distances from our HEERV metric
to evaluate the accuracy of the RGT estimation or horizon
extraction.

III. TRAINING AND VALIDATION

In this section, we first illustrate the workflow of the training
data generation. Then, we introduce the detail of training and
validation. Finally, we show the performance of our model on
synthetic validation data.

A. Training Data

As a supervised learning method, our proposed MTL net-
work needs a large number of samples (seismic images and
horizon segments) and labels (RGT and fault images) to train a
model with stability and robustness. The fault labels obtained
from field seismic images by manually picking are time
consuming and highly subjective and estimating RGT maps
accurately from field seismic images are almost impossible.

Therefore, we use a workflow to automatically build a
synthetic training dataset [62]. First, we build an initial flat
reflectivity model and add some folding and faulting controlled
by some parameters. Next, we convolve the model with a
Ricker wavelet to obtain a clean synthetic seismic image and
add some noise extracted from field data with a random SNR
to make the synthetic seismic image [Fig. 5(a)] more similar to
field data. The reflectivity, structure parameters, and the peak
frequency of wavelet and SNR are all randomly chosen in a
reasonable range. To obtain the corresponding fault labeling
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Fig. 5. Four of 10 000 synthetic training samples. The training dataset includes (a) seismic images, (b) corresponding faults, and (c) RGT labels. (d) Horizons
segments are randomly extracted from the RGT labels and are input together with seismic images into our neural network to provide constraints.

image, we select the points between the hanging wall or
footwall sides as fault labels. The fault label points and other
points, which are, respectively, assigned with ones and zeros,
form the binary fault label image [Fig. 5(b)] corresponding to
the seismic image.

To obtain the corresponding RGT label, an initial flat RGT
model is built with vertically monotonic increasing values.
Then, we use the same structure parameters, which are chosen
for the reflectivity model, to simulate the same folding and
faulting structures in this RGT model [Fig. 5(c)]. By using
this workflow, we randomly choose the parameters in the
above-mentioned description and generate 10 000 pairs of 2-D
seismic images and corresponding fault and RGT labeling
maps with the size of 128×256. Finally, we randomly extract
several horizons (RGT contours) [Fig. 5(d)] from each RGT
map in every training epoch and use them as part of the
network inputs to provide prior constraints of known horizons.
In defining a known horizon, we choose a partial or complete
contour randomly, because we may not be able to obtain a
whole horizon of a field seismic image [63]. In this way, the
model is trained to be able to deal with situations of various
horizon segments as input.

B. Training Details
We train our MTL network by using 9600 pairs of synthetic

seismic images and corresponding RGT and fault images, and
another 400 pairs are used for validation. To relieve the effects
of the seismic amplitude variations between field and synthetic
seismic images, we use the normalization that seismic images

are subtracted by their means and divided by their standard
deviations. To define the values of horizon segments, every
RGT map is normalized by its minimum and maximum, and
the range of RGT values is from 0 to 1. We use the pretrained
model, which was trained by common RGB images with three
channels. To be consistent, we define our inputs with three
channels (horizon segments, seismic, and seismic). We set
the training epoch to 800 and the batch size to 80. From
our experience, a transformer network needs a large amount
of training data and a relatively small learning rate (LR)
compared with a CNN model to obtain an excellent result, and
we use a StepLR with the initial value of 0.001 and decay the
LR by 0.5 after every 100 epochs [Fig. 6(c)]. Our proposed
network is optimized with the Adam optimizer whose weight
decay is set to 0.0001.

The RGT loss curves [Fig. 6(a)] and the fault loss
curves [Fig. 6(b)] converge to less than 0.004 and 0.3 after
800 epochs, respectively. As shown in Fig. 7, the reflection
features are highly contaminated by noise, and the fault
structures are complex [Fig. 7(a)]. However, the predicted
RGT [Fig. 7(d)] and fault images [Fig. 7(h)] are almost the
same as the labels [Fig. 7(c) and 7(g)]. The contours [Fig. 7(e)]
extracted from predicted RGT maps [Fig. 7(d)] represent hori-
zons, which accurately follow seismic reflections, even across
the faults [Fig. 7(d)]. As shown in Fig. 7(f), the extracted
horizons can also fit the known horizon segments well. This
indicates that our network predicts RGT maps confirming the
known horizon segments, which enables human interactions in
complex field examples to compute reasonable RGT results.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 03,2023 at 12:36:23 UTC from IEEE Xplore.  Restrictions apply. 



5907720 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 61, 2023

Fig. 6. (a) Training (blue) and validation (orange) loss curves for RGT estimation. (b) Training (blue) and validation (orange) loss curves for fault detection.
These two training processes are simultaneously performed. (c) LR curve is updated at every 100 epochs.

TABLE I
COMPARISON OF DIFFERENT NETWORK IN EFFICIENCY

IV. COMPARISON EXPERIMENTS

In this part, we first perform several field data tests to
verify the superiority of our RGT estimation with transformer
over the previous CNN-based method [64]. We show that
the transformer architecture and horizon constraints signifi-
cantly improve the RGT estimation, and we also show the
improvement by adding an integral layer before outputting the
RGT map. Furthermore, with 3-D horizon constraints, we can
decompose the 3-D RGT estimation to 2-D predictions slice by
slice. Finally, we show the results containing predicted RGT
and fault images from the whole MTL network.

A. CNN Versus Transformer

The previous CNN method [64] for 2-D RGT estimation
obtains an excellent performance, and we can use it to extract
horizons easily from a seismic image. But this method also
has some limitations: 1) the network in this method has
high costs in computation. After four residual blocks in the
encoder part, the number of feature maps steeply rises to
2048. 2) The network in this method has a relatively small
receptive field. Maintaining a large receptive field is important
for the RGT estimation problem to capture global structural
information.

The hierarchical and efficient encoder in our RGT esti-
mation branch helps solve these problems. Floating point
operations (FLOPs) and trainable parameters indicate the
efficiency and complexity of a network, respectively. As shown
in Table I, our RGT estimation branch is much more efficient
and lightweight than the one proposed in [64]. Next, we further
compare the receptive field and RGT estimation accuracy of
our method with the CNN-based method.

A unit in a feature map of a neural network depends on
a region of the input image, and the region can be defined
as the receptive field for this unit. With a bigger size of the
receptive field, a network is able to better extract high-level
features and fuse global information more effectively. A large
receptive field is important for the task of RGT estimation that
requires globally fitting structures in an input seismic image.

The receptive field is theoretically dependent on the network
architecture (e.g., convolutional kernel size, number of layers,
and downsampling) but the effective receptive field (ERF)
can also be affected by the training process and the network
inputs [65]. Compared with the theoretical receptive field
(TRF), ERF is related to the features of the input image, and
it can more directly show the ability of a trained network in
extracting and fusing global information in practice. Fig. 8(a)
is a seismic image fed into CNN [64] and our network with
a transformer backbone, and Fig. 8(b) and (c) is the ERFs of
the center unit [red points in Fig. 8(b) and (c)] in these two
networks. We can observe that the RGT estimation branch of
our network shows a larger ERF than CNN. Moreover, the
CNN receptive field [Fig. 8(b)] is isotropic in space, while
the one of our network [Fig. 8(c)] appears an anisotropic
shape reasonably follow the layered structure [denoted by
white curves in Fig. 8(c)] and even the dislocation across
the fault [denoted by the red line in Fig. 8(c)] in the input
seismic image. We think the anisotropic receptive field, with a
long-distance extension following seismic structures, would be
essential for estimating an accurate RGT result from a seismic
image.

We use a field example (128 [vertical] × 256 [inline]
samples) in Fig. 9 to demonstrate the advantage of the RGT
estimation branch of our network. The reflections in this field
seismic image [Fig. 9(a) and (b)] appear significant lateral
variations and are dislocated by several faults, which poses
challenges to the RGT estimation from the seismic image.
In this example, we manually interpret two horizons [solid
curves in Fig. 9(a) and (b)] to validate the predictions by
networks. The second row of Fig. 9 shows the RGT results
predicted by the previous CNN [Fig. 9(c)] and our RGT
estimation branch [Fig. 9(d)]. They look quite similar but
our result appears sharper discontinuities across the faults
denoted by black arrows [Fig. 9(d)]. To better evaluate the
CNN-based and our RGT results, from which we extract two
horizons (corresponding to the manual ones) and display them
with dotted curves in Fig. 9(a) and (b), respectively. The
horizons extracted from our RGT results visually better fit the
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Fig. 7. We show several inputs from the validation dataset and the corresponding results, including (a) seismic images, (b) horizon segments, (c) RGT
labels, (d) predicted RGT maps, and (e) contours extracted from (d). (f) Contours (purple dotted curves) extracted from (d) perfectly fit the input horizon
segments (b). (h) Fault images, predicted at the same time as the RGT estimation and also fit (g) fault labels well.

manual horizons than the ones extracted from the CNN-based
RGT. The quantitative metric HEERV of our result (5.957) is
also lower than the CNN result (7.712). The HEERV values

indicate that our network is able to obtain a more reasonable
horizon and fault interpretation result from a seismic image
compared with the CNN-based method. Finally, we can easily
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Fig. 8. With the same input seismic image (a), the previous CNN-based method yields an isotropic ERF centered at the target point (denoted by the red
dot), while our network generated a geologically more reasonable ERF which is spatially anisotropic and follows seismic reflection and fault structures (write
curves and red lines).

Fig. 9. Previously proposed CNN-based [49] (left column) and our transformer-based (right column) RGT estimation methods are applied to a field example
with complex faults. Compared with the results of the CNN-based method, our RGT result appears sharper discontinuities across the faults as denoted by
black arrows. In addition, the horizons (dashed curves) extracted from our RGT map better fit the manually interpreted horizons (solid curves), as shown in
the first row.

extract any number of contours from the RGT results to obtain
a set of dense horizons that follow reflections and dislocate
across faults, as shown in Fig. 9(c) and (d).

B. Horizon Constraints
It is a common challenge to compute geologically reason-

able horizons or faults from a seismic image with complex
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Fig. 10. For the same example in Fig. 9, we use the interpreted horizons (solid curves in the first row) as constraints to improve the RGT estimation (c),
from which the extracted horizons or contours more accurately follow seismic reflections (e) and the manual interpretation (a) than those in Fig. 9. We add
an integral layer, as discussed in [66], at the end of the RGT estimation network to further improve the RGT estimation and (the black arrow in d) obtain a
lower HEERV (0.482).

structures, artifacts, and low SNR for existing autometh-
ods [19], [20], [24], [50], [64]. In these cases, experts typically
need to interpret with their prior knowledge of geological
background instead of simply tracking seismic geometric fea-
tures which may be unclear or even geologically untrue due to
limited resolution and artifacts of seismic imaging. Similarly,
it is necessary to incorporate prior expert geological knowl-
edge into automatic seismic structural interpretation methods,
including our MTL method, to deal with complicated cases.
Inputting manually interpreted horizons into our network is an
effective way to incorporate prior constraints to help estimate
reasonable RGT maps from seismic images with complex fault
systems, poor data quality, and unconformities. Moreover, with
the constraints of 3-D horizons, we are able to decompose
a 3-D RGT estimation task into computationally cheap 2-D

predictions slice by slice in a 3-D seismic volume but still
maintain lateral consistency among the 2-D RGT results.

1) Complex Fault Systems: For the same example in Fig. 9,
we input the two manually interpreted horizons together with
the 2-D seismic image into our network and obtain an RGT
result and its associated horizons (contours) in the left column
of Fig. 10. As shown in Fig. 10(a), the horizons (dotted
curves) extracted from the estimated RGT map fit well with
the manual ones used as constraints, which indicates that the
network performs RGT estimation honoring the input horizon
constraints as what we expect. As shown in Fig. 10(e), a set of
dense horizons (contours) extracted from the RGT map follows
seismic reflections, which indicates the network also tends to
fit seismic structures in estimating the RGT map. Moreover,
the input horizon constraints not only ensure accurate RGT
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estimation near the horizon positions but also improve and
stabilize the RGT estimation in other areas, which we will
illustrate in more examples in the following sections.

As discussed in [66], we can further improve the perfor-
mance of our network by adding a layer of vertical integration
operation before the output layer as denoted by the dark green
arrow in the RGT estimation branch in Fig. 3. With this layer,
we assume the network learns to estimate RGT derivatives
from the inputs and the integration converts the derivatives
to an RGT map. Such integration will accumulate prediction
errors, if exist, and therefore, emphasize the misfit between
the predictions and labels during the training process, which
would be helpful to better train the network. In addition, the
integration is a global operator that is helpful for the network
to fuse global features for the RGT estimation. Although the
RGT results and their associated contours (horizons) of the
network without (left column of Fig. 10) and with (right
column) the integration layer are visually similar, the HEERV
metric of the later is relatively smaller (0.482) than the former
(0.555). In addition, the latter [Fig. 10(f)] can accurately
produce a discontinuity across the fault [denoted by the black
arrow in Fig. 10(f)], while the former missed that.

2) Poor Data Quality: In addition to complex faults, the
horizon can also guide the network to track reflections in a
seismic image with low SNR and artifacts. The first row of
Fig. 11 shows a low SNR dataset (128 [vertical]×256 [inline]
samples) from the Soda Lake geothermal field, where some
of the reflections are almost invisible and, therefore, are
hard to track for an automatic horizon interpretation method.
As shown in Fig. 11(a), if we use only the seismic image as the
input, the horizons computed by our network are quite messy
and do not fit the manual ones [solid curves in Fig. 11(a)],
which indicates that our network cannot compute a reasonable
RGT map from a seismic image with unclear reflections.
Therefore, we gradually add more and more horizon segments
as constraints to illustrate how the horizon constraints affect
the RGT estimation from a seismic with low data quality.
As denoted by the solid curves of the second column of
Fig. 11(a)–(f), we track eight horizons by manually picking.
By inputting one horizon [solid curve in the first image of
Fig. 11(b)] as constraints into the network, we are able to
compute much more stable horizons [curves in the third image
of Fig. 11(b)], compared with those in Fig. 11(a). However, the
computed horizons still do not fit well with the manual ones
except near the constraint horizon, as shown in the second
image of Fig. 11(b). As shown in Fig. 11(c), we further add
two more horizons as constraints and obtain more reasonable
horizons that fit well with most of the interpreted horizons,
even in areas far away from the constraint horizons. To further
improve the result, we add one more horizon in the region
with blurry reflections [the green one in the first image of
Fig. 11(d)], which leads to geologically reasonable horizons
everywhere in the seismic image.

In addition, we find that the result constrained by four hori-
zons [Fig. 11(d)] is almost identical to the result constrained
by all eight horizon segments [Fig. 11(f)]. This indicates
that the constraint of these four horizons is sufficient for
the network to estimate an accurate RGT map from this

seismic image with low data quality. In some situations,
experts may not interpret a complete horizon, which means
that only partially interpreted horizons or horizon segments
are available to be used as constraints. We mimic this case in
Fig. 11(e), where we use only the left part of the green horizon
as constraints. In this case, we still obtain accurate horizons
[Fig. 11(e)], which are almost identical to those computed
with the constraint of the entire green horizon in Fig. 11(d).
This test indicates that our method allows using incompletely
interpreted horizons or horizon segments as constraints to
improve the RGT estimation, which facilitates its applications
in practice.

In our experiments, we use two methods to determine the
RGT values of horizon patches. In most cases, we calculate
the relative locations of horizon patches within the vertical
space, using values ranging from 0 to 1 as the RGT values.
If the layer in the area is inclined or folded significantly, the
RGT values may be unreasonable. In this instance, we may
need to interpret complete horizons through the entire survey
to decide reasonable RGT assignments. To solve this problem,
we need to first manually determine the geologic time order of
the constraint horizons or horizon patches based on the geo-
logic background of the survey or the stratigraphic sequence
that appears in the seismic volume. We then assign some
reasonable RGT values to the horizons in order. Our method
is designed to automatically compute an RGT map with
an adaptive range of values honoring the RGT assignments
at the horizons, and we only need to make sure the RGT
assignments are in a geologically reasonable sequence, that
is the assigned RGT values of vertically shallower horizons
should be relatively smaller than the deeper ones. Note that
here we assume no overturning layers appear in the seismic
images.

3) Unconformities: Unconformity [e.g., the region between
dark blue and light green solid curves in Fig. 12(a)] can be
regarded as a boundary where seismic reflectors terminate. It is
indicated by vertical geologic time discontinuity in the corre-
sponding RGT map. The reflector terminations or geologic
time discontinuities near unconformities pose another type of
challenge for the task of automatic horizon interpretation in a
seismic image. It is also a challenge for our network trained
by a dataset without any unconformity features. By inputting
the seismic images (128 [vertical] × 256 [inline] samples)
[Fig. 12(a)] into our network, we obtain the corresponding
RGT maps in Fig. 12(b), where we do not observe any vertical
discontinuities near the unconformities as expected. To be able
to reasonably deal with the unconformities, one potential way
is to retrain the network by seismic images with unconformi-
ties and the corresponding RGT labels with discontinuities
at the unconformities. Here, however, we provide a more
convenient way by incorporating some horizon constraints
without the need of retraining the network.

We manually interpret four horizon segments [solid curves
in Fig. 12(a)] and use them as constraints in our network for
the RGT estimation. Note that the horizons used as constraints
need to be geologically isochronous. Therefore, the light blue
and cyan horizons are interpreted to be terminated at unconfor-
mities where the geologic time is varying. Fig. 12(c) shows the
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Fig. 11. Comparison study of using different numbers of horizons as constraints. In the first column, a seismic image with a different number of horizons is
input to our network for RGT estimation. In (a)–(d), as we increase the number of constraint horizons from 0 to 4, the contours or horizons, extracted from
the estimated RGT maps, become increasingly better fit to the interpreted horizons (solid curves in the second column) and seismic reflections (third column).
The contours (d) from the RGT map constrained by four horizons are similar to those (f) constrained by eight horizons. Compared with using constraints
from all four complete horizons (d), we can still obtain a quite similar RGT map by making one [the left part of the green horizon in (e)] of the constraint
horizons incomplete.

RGT maps computed by using the horizon constraints, where
we observe sharp vertical discontinuities near the unconfor-
mities, as denoted by the yellow and red arrows. Fig. 12(d)
shows horizons (contours) extracted from the estimated RGT
maps, from which we observe geologically reasonable horizon

onlaps and downlaps at the unconformities denoted by the
yellow and red arrows, respectively. This example shows that
using horizon constraints, our network is able to reasonably
estimate the geologic time discontinuities corresponding to the
onlap and downlap of the unconformity, although there are
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Fig. 12. RGT estimation in (a) seismic images with unconformities. The network does not work well to estimate (b) RGT maps from seismic images with
unconformities because it is trained with synthetic datasets without unconformity features. However, we can input some horizons (solid curves in the first
row) into the network as constraints to improve the (c) RGT estimation and (d) horizon extraction, where we observe reasonable discontinuities near the
unconformities as denoted by yellow and red arrows.

no structures of unconformities in our training dataset. It is
hard to prepare a truly diverse training dataset that contains
all kinds of geologic structures or features, which typically
limits the generalization of a trained network in various
field datasets. However, the idea of using horizon constraints
provides a convenient way to involve human interactions in the
inference step of a trained network and effectively improve its
generalization in various structures that may not be included
in the training datasets.

4) Obtain a 3-D RGT Volume From 2-D Predictions: Field
seismic data today are mostly in 3-D and it is necessary for
an algorithm to be able to deal with 3-D volumes. However,
training a 3-D deep neural network with 3-D convolutional
kernels and feature maps is much more time consuming than
training a 2-D network, even using relatively small volumes
of training data. In addition, predicting an RGT volume from
a large 3-D seismic volume is also expensive in computational
time and memory for a trained network, which limits its
applications in practice. Bi et al. [50] solve this problem by
dividing a large 3-D volume into smaller subvolumes and
making a prediction for each subvolume, which requires a
complex postprocessing step to merge the predicted subvol-
umes of RGT to obtain a large RGT volume without merging
artifacts.

We propose a more efficient and practical way to compute a
3-D RGT volume from a seismic volume by 2-D predictions
slice-by-slice in the inline or crossline directions. The main

challenge of this way is to maintain lateral consistency among
these independent 2-D predictions. For example, Fig. 13(b)
shows a 3-D RGT volume (128 [vertical] × 256 [inline] ×

150 [crossline] samples) obtained by directly assembling 2-D
predictions, where we observe obvious unreasonable lateral
jumps in the predicting direction. We propose to maintain
lateral consistency among the slice-by-slice 2-D predictions by
introducing the lateral control of 3-D horizons. Specifically,
for each 3-D horizon surface used for control, we assign
the same RGT value to all points on the 3-D surface,
as shown in Fig. 13(c). This ensures the horizon constraints
input into the network for each 2-D prediction are consistent
and, therefore, makes sure the RGT values predicated at
the constraint horizons in all 2-D predictions are identical.
In this way, we are able to compute laterally consistent 2-D
RGT predictions that are directly assembled together in the
predicting direction to form a reasonable 3-D RGT result,
as shown in Fig. 13(d). In addition to the lateral consistency,
the horizon constraints also improve the RGT estimation
near the unconformities where we observe obvious vertical
RGT discontinuities. As shown in Fig. 13(e) and (f), the
3-D horizons extracted from the 3-D RGT accurately follow
seismic reflections and some of them reasonably terminate at
the unconformity. This example demonstrates that we are able
to decompose a 3-D RGT prediction task into much more
efficient 2-D predictions but still maintain lateral consistency
by introducing 3-D horizon constraints.
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Fig. 13. Computing a 3-D RGT volume from a (a) 3-D seismic image by independent 2-D predictions slice-by-slice yields unreasonable lateral jumps in
the (b) predicting direction. We use 3-D horizon surfaces [solid curves in (c)] as constraints to maintain lateral consistency of the 2-D predictions to obtain a
(d) reasonable 3-D RGT volume. The 3-D horizons [(e) and (f)] extracted from the RGT volume fit seismic reflections well and reasonably terminate at the
unconformity.
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Fig. 14. There are obvious sharp edges in the (b) RGT maps, which correspond to the faults in (d) fault predictions, and the (c) contours extracted from (b)
RGT maps fit seismic reflectors well.

Fig. 15. By using our MTL network, we simultaneously compute reasonable predictions of RGT estimation and fault detection from the (a) 2-D seismic
images and horizon constraints. In the (b) estimated RGT maps, we observe sharp edges or discontinuities, which correspond to dislocations in the (c) extracted
horizons (contours) and (d) high fault probability in the fault images.

C. Simultaneous RGT and Fault Prediction
In this section, we use the same seismic image (Fig. 14)

as in Figs. 9 and 10 to demonstrate the effectiveness of the

simultaneous RGT and fault prediction by the complete MTL
network with two branches. The inputs for the branch of fault
detection consist of the second derivatives of the predicted
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Fig. 16. With the (b) 3-D horizon constraints, we compute 2-D fault images and RGT maps (Fig. 15) slice-by-slice in a (a) 3-D seismic volume and directly
assemble these predictions in the predicting direction to obtain 3-D volumes of (c) fault probabilities and (d) RGT values. Due to the constraints of 3-D
horizons in the 2-D predictions, the (d) assembled 3-D RGT volume maintains lateral consistency in the predicting direction, and the iso-surfaces [(e) and
(f)] extracted from the RGT volume fit seismic reflectors well. (f) Horizon dislocations correspond to the high fault probabilities in the (c) fault volume.
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RGT map and features concatenated from the transformer
encoder. Because the RGT map is a scalar field globally
fitting the seismic structures, the RGT derivatives provide
mostly detailed seismic structural features to help obtain a
noise-free and continuous fault detection. The feature maps
from the transformer encoder contain more detailed structure
features to help detect small-scale faults. The fault detection
branch network merges both the inputs and obtains a fault
map with multi-scale faults as shown in Fig. 14(d), where
the fault features are clean and continuously trackable. During
the training process, the gradients of the fault detection loss
function are backpropagated from the fault detection branch
back to the RGT estimation branch, which helps the network
to produce discontinuities across faults in the RGT result.
As shown in the estimated RGT results [Fig. 14(b)] and
their associated horizons or contours [Fig. 14(c)], we observe
sharp RGT discontinuities and horizon dislocations across the
detected fault positions.

V. APPLICATION

In this section, we apply optimal schemes, based on the
above-mentioned comparison experiments, to a 3-D seismic
dataset with faults. First, we use the horizon segments and
seismic images [Fig. 15(a)] as inputs to obtain RGT maps
[Fig. 15(b)] and fault images [Fig. 15(c)]. The contours
extracted from predicted RGT maps can fit interpreted hori-
zons well [Fig. 15(a)], and these contours [Fig. 15(c)] accu-
rately follow continuous seismic reflections and dislocations
across faults. The fault detections in Fig. 15(d) are consistent
with the sharp edges that appear in the predicted RGT maps,
and we think it benefited from the MTL scheme of simulta-
neous RGT estimation and fault detection.

With the constraints of the three 3-D horizons, the indepen-
dently computed 2-D predictions can be directly assembled in
the predicting direction to obtain laterally consistent 3-D vol-
umes (128 [vertical] × 256 [inline] × 150 [crossline] samples)
of RGT values and fault probabilities. The 3-D RGT volume
[Fig. 16(d)] and the corresponding iso-surfaces [Fig. 16(f)]
accurately fit the reflections in the seismic volume [Fig. 16(a)].
The faults in the seismic volume are also accurately detected,
as shown in Fig. 16(c). Finally, the iso-surfaces extracted
from RGT volume [Fig. 16(d)] correspond to 3-D horizons,
as shown in Fig. 16(e).

VI. CONCLUSION

We propose an MTL network for simultaneous RGT esti-
mation and fault detection from a seismic image with the
interpreted horizons as prior constraint information. The pre-
dicted RGT map can be further used to extract any horizon
in the seismic image. The transformer encoder in the RGT
estimation branch of the MTL network can capture global
structural information from the inputs, and SFF can fuse the
global and local features from the transformer encoder and
CNN decoder. The simple end-to-end CNN uses the fault
information from the second gradients of the predicted RGT
and the feature maps from the transformer encoder to detect
faults. By sharing feature maps and network parameters in the

training, these two tasks could provide controls for each other.
Two loss functions constrained by prior horizon information
are used in the RGT estimation branch, and the loss function
to fit the imbalanced distribution of the positive and negative
samples is used in the fault detection branch. We carry out
comprehensive comparison studies to optimally design our
schemes, which include the architectures of networks, the
addition of prior horizon information, predicted results from
2-D to 3-D, and MTL. In multiple filed applications, our
method can robustly predict reasonable RGT maps even in
seismic images containing complex fault systems, unconfor-
mities, and blurry reflections, and at the same time compute a
fault image with clean and continuous fault features. Finally,
this method significantly improves the efficiency and saves the
memory of 3-D RGT estimation by computing and merging
parallel 2-D results slice by slice with the constraints of 3-D
horizons.

Some limitations still remain in our method. First, our
network model was trained on training samples with a size
of 128 × 256 pixels. In practical data applications, it is often
necessary to reshape seismic data into the same size through
interpolation or downsampling to obtain optimal results. When
the actual data size is much larger than 128 × 256, we need
to perform block-wise predictions and require additional post-
processing to merge the block-wise results. Second, due to
the large demand for memory and computational resources,
we only tested the implementation of our method in two
dimensions in this article. This 2-D implementation can be
applied to process a 3-D seismic volume and obtain a reason-
able result with lateral consistency by introducing constraints
of 3-D horizons. However, we believe that the implementation
of our method in three dimensions is still valuable for better
analyzing and fitting 3-D structures. The extension of our
method from two dimensions to three dimensions is straight-
forward in algorithm implementation, but optimization of the
network’s computational efficiency and memory requirements
is needed given the current performance of GPUs.
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