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SUMMARY

Automated horizon-extraction methods often have difficulty
extracting horizons that terminate at unconformities or se-
quence boundaries. Using sequence boundaries as constraints
is one way to solve this problem, but there exists no automat-
ed method for sequence-boundary extraction. We first intro-
duce a globally optimal method to efficiently extract a horizon
from a seismic image. We then use scattered control points as
constraints to enable our horizon-extraction method to extract
sequence boundaries. Finally, we propose an active-surface
method to refine extracted horizons to align them with ampli-
tude peaks or troughs and thereby reveal more geologic details.

INTRODUCTION

Horizons and sequence boundaries are geologically significant
surfaces that can be extracted from seismic images. Horizons
refer to those seismic reflectors representing stratal surfaces of
constant geologic time. Sequence boundaries coinciding with
unconformities can also be extracted along reflectors, but they
represent geologically time-variable surfaces (Vail et al., 1977).

Both locally and globally optimal methods have been devel-
oped to automatically extract horizons. Locally optimal meth-
ods extract horizons by searching the peaks or troughs of seis-
mic reflectors. Horizons extracted using these methods can
follow small-scale geologic structures and thus they are help-
ful for revealing geologic details. These methods, however,
are usually sensitive to noise and limited to simple geology
(Hoyes and Cheret, 2011). Globally optimal methods (e.g.,
Lomask et al., 2006; Parks et al., 2010; Luo and Hale, 2012;
Stark, 2005; Wu and Zhong, 2012a,b) flatten an entire 3D seis-
mic image and obtain all globally optimized horizons in the
seismic image simultaneously. They are more robust for noisy
data, however, horizons extracted using these methods are usu-
ally smooth and therefore lack detailed geologic structures.

In addition, all of the horizon-extraction methods discussed
above share the common difficulty in extracting horizons that
terminate at an unconformity or sequence boundary. One way
to solve this problem is to first extract all sequence boundaries
in a seismic image and then use them as constraints while ex-
tracting other horizons. However, no method has yet been de-
veloped to extract sequence boundaries automatically.

In this paper, we first introduce a horizon-extraction method
that uses seismic normal vectors to efficiently extract a glob-
ally optimized horizon from a seismic image. We then dis-
cuss the use of sparse control points that constrain our horizon-
extraction method to extract sequence boundaries. Finally, we
introduce an active-surface method that uses seismic ampli-
tudes to refine horizons to resolve more geologic detail.

HORIZON EXTRACTION

We first use structure tensors (van Vliet and Verbeek, 1995;
Fehmers and Höcker, 2003) to compute seismic normal vec-
tors n = [nx ny nz]

T that are locally perpendicular to seismic
reflectors. We then assume a surface z = f (x,y) that is initially
horizontal at some specified depth or time. The normal vectors
of the surface can be computed as

ns = α[− fx − fy 1]T (1)

where fx ≡ ∂ f (x,y)/∂x, fy ≡ ∂ f (x,y)/∂y, and α is a scale
factor to normalize ns as unit vectors. To extract a seismic
horizon, we seek to find a surface whose normal vectors ns
equal the seismic normal vectors n at corresponding points in
the 3D seismic image:

α[− fx − fy 1]T = [nx ny nz]
T . (2)

Therefore, setting α = nz, we solve the following inverse gra-
dient problem to extract the horizon surface z = f (x,y),

α[ fx fy]T = [p q]T . (3)

where p = −nx/nz and q = −ny/nz are reflector slopes in the
x and y directions, respectively. Similar to Wei and Klette
(2002), we solve this problem by minimizing

E =

∫ ∫
Ω

1
2
(| fx− p|2 + | fy−q|2)dxdy

+
µ

2

∫ ∫
Ω

(| fxx|2 +2| fxy|2 + | fyy|2)dxdy.
(4)

The second term is related to surface curvatures and is used to
improve the robustness of the method for noisy or chaotic seis-
mic reflectors. The value µ ≥ 0 weights this surface-curvature
term. To minimize the above cost function E, we use the cal-
culus of variations to obtain the Euler-Lagrange equation:

4 f −µ42 f = ∇ ·g, (5)

where g = [p q]T ,4 f = fxx + fyy, and42 f = fxxxx +2 fxxyy +
fyyyy. By solving this equation, we can update the surface z =
f (x,y) so that its normal vectors ns match the seismic normal
vectors n at all points (x,y,z = f (x,y)) on the surface.

In Figure 1, using only one control point to indicate the se-
quence boundary we want to extract, our method updates the
initially horizontal surface to the more nearly correct position
(blue curves in Figure 1) after 9 iterations. The updated surface
is well aligned with reflectors in the conformable areas (left
section in Figure 1a) where normal vectors can be estimated
accurately. However, the surface is not updated to the correct
location at the angular unconformity (green dashed curve in
Figure 1b). Automatically extracting such a sequence bound-
ary or unconformity is an important but difficult problem. Us-
ing structure tensors, we fail to estimate correct normal vec-
tors at an angular unconformity, but instead compute smoothed
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Figure 1: Seismic sections (a) and subsections (b) that intersect with a sequence boundary. The initially horizontal surface (black
curve) passes through one control point and is updated iteratively using seismic normal vectors. The dashed green curve denotes
the sequence boundary extracted using 26 control points.

Figure 2: Seismic sections (a) and subsections (b) and (c) that intersect with an extracted sequence boundary using one control
point (blue curve), 26 control points (green curve), and after refining (red curve) using our active-surface method.

Figure 3: A 3D view of the amplitude-colored sequence boundaries (blue, green and red curves in Figure 2) that are extracted using
(a) one control point, (b) 26 control points, and (c) 26 control points with refinement using our active-surface method. The green
points are control points.
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vectors that yields the incorrect surface in angular unconfor-
mity areas. In the next section, we describe how to correctly
extract a sequence boundary using sparse control points.

SEQUENCE BOUNDARY EXTRACTION

Near unconformities or in areas where the image is noisy, the
estimated normal vector field is not reliable enough to extract a
correct sequence boundary or horizon. In such cases, we use a
small number of scattered control points (xi,yi,zi), i = 1, . . . ,n
to interpolate a correction that updates the surface described
the above section to extract an accurate sequence boundary or
horizon in a noisy image. In each iteration of surface updating,
we first compute an updated surface z = f (x,y) using seismic
normal vectors. Similar to Horovitz and Kiryati (2004), we
then use the thin-plate spline interpolation method to interpo-
late a correction zc = c(x,y) by using the depth differences
zi− f (xi,yi) between the control points and the updated sur-
face. The surface is then corrected using the interpolated cor-
rection field, before the next iteration.

Thin-plate spline interpolation
Thin-plate spline interpolation is a classic method for interpo-
lation of scattered data to yield a smooth function c(x,y) that
minimizes the integral

I(c) =
∫ ∫

Ω

(|cxx|2 +2|cxy|2 + |cyy|2)dxdy, (6)

while satisfying the interpolation conditions

c(xi,yi) = zi, i = 1,2, . . . ,n. (7)

Duchon (1977) shows that the interpolating function c(x,y) has
the form

c(x,y) = a0 +a1x+a2y+
n∑

i=1

wiφ(ri), (8)

where ri is the distance between the i-th control point (xi,yi)
and (x,y) ∈ Ω, a0, a1 and a2 are coefficients, and φ(r) =
r2log(r), 0 < r < ∞. The coefficients wi satisfy

n∑
i=1

wi = 0,
n∑

i=1

wixi = 0,
n∑

i=1

wiyi = 0. (9)

From the correction values known at the control points,

c(xi,yi) = zi− f (xi,yi), (10)

we can compute the coefficients [w1 · · · wn a0 a1 a2], and then
use equation 8 to interpolate correction values c(x,y) at every
(x,y) for which the surface is defined. The horizon f (x,y) up-
dated by using seismic normal vectors is then corrected by

fc(x,y) = f (x,y)+ c(x,y). (11)

This corrected horizon fc(x,y), which now honors the control
points, is then used for the next iteration.

Results using control points
The sequence boundary extracted (green curves in Figures 1

and 2) with 26 control points correctly follows the unconformi-
ty while the one (blue curves in Figures 1 and 2) with one con-
trol point fails. In the 3-D view of amplitude-colored sequence
boundaries, amplitude values for 26 control points (Figure 3b)
are more uniform than for one control point (Figure 3a). More-
over, the initial surface takes 9 iterations to converge using one
control point but only 5 iterations using 26 control points. The
extracted sequence boundary with 26 control points is further
refined (Figure 3c and red curves in Figure 2) by using the
active-surface method which we discuss in the next section.

SURFACE REFINEMENT

Using the global optimization and orientations estimated from
locally averaged structures, horizon-extraction methods might
smooth out some subtle geologic structures or details that can
be important in geologic interpretations. To reveal more subtle
geologic structures in a horizon, we propose an active-surface
method to refine extracted horizons.

Active surface
The active-snake or active-contour model, first introduced by
Kass et al. (1988), is a powerful method for detecting closed
boundary curves in 2D image segmentations. The active-snake
method is based on energy-minimizing spline curves influenced
by internal forces and external image forces. The external im-
age forces pull an initial contour to nearby edges in the 2D
image, while the internal forces preserve the original shape
and smoothness of the contour. Chopra and Marfurt (2008)
suggest that the active-snake or active-contour method might
be used to detect channels and other stratigraphic features. In
this paper, we discuss an active surface that is an open surface
that deforms vertically to align with nearby peaks or troughs
in seismic amplitude.

A globally optimized horizon z= f (x,y) that is consistent with
reflector structure is not necessarily aligned with seismic peaks
or troughs. We take the horizon as an active surface, and define
the energy of the active surface using an internal energy term
Eint and an external energy term Eext . The internal energy of
the active surface is defined by using the surface curvature ap-
proximation used in equations 4 and 6:

Eint( f ) =
∫ ∫

Ω

1
2
(| fxx|2 +2| fxy|2 + | fyy|2)dxdy, (12)

the external energy is related to seismic amplitudes A(x,y,z):

Eext( f ) =
∫ ∫

Ω

±A(x,y, f (x,y))dudv. (13)

To align the horizon with seismic troughs we simply use the
amplitude A(x,y, f (x,y)); to align with seismic peaks we use
−A(x,y, f (x,y)). Assume we want the horizon to be aligned
with troughs. Then the total energy of the active surface is

E( f ) =
∫ ∫

Ω

[
β

2
(| fxx|2 +2| fxy|2 + | fyy|2)

+A(x,y, f (x,y))]dxdy.
(14)

Again using the calculus of variations, we derive the following
Euler-Lagrange equation to minimize the above energy func-
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Figure 4: Seismic sections (a) and subsections (b) and (c) that intersect with an extracted seismic horizon using one control point
(blue curve), 25 control points (green curve), and after refining (red curve) using our active-surface method.

Figure 5: A 3D view of the amplitude-colored horizons (green
and red curves in Figure 4) that are extracted with (a) 25 con-
trol points (green points) and (b) after refinement.

Figure 6: A 3D view of the time-colored horizons (green and
red curves in Figure 4) that are extracted with (a) 25 control
points (green points) and (b) after refinement.

tion and to align the horizon z = f (x,y) with nearby seismic
troughs:

β42 f +
∂A
∂ z
|z= f (x,y) = 0. (15)

Results for the active-surface method
The globally optimized horizons extracted with (blue curves
in Figure 4) one control point and with (Figures 5a and 6a and
green curves in Figure 4) 25 control points are smooth. Apply-
ing our active-surface method to the horizons (green curves in
Figures 2 and 4), we obtain refined horizons (red curves in Fig-
ures 2 and 4) that are well aligned with seismic troughs. In the
3D views of the refined horizons (Figures 3c, 5b and 6b), we
see many subtle geologic structures that cannot be seen in the
unrefined horizons. For example, although we observe some
amplitude variations that indicate the existence of a channel in
the globally optimized horizon (Figure 5a), the incised valley
structure of the channel is not apparent. After refinement, we
clearly see the cross-section of the incised channel in Figure
4b. The incised valley structure and shape of the channel are
readily and continuously apparent in both the amplitude- (Fig-
ure 5b) and time-colored (Figure 6b) horizons.

CONCLUSION

Our horizon-extraction method extracts any horizon we choose
in a seismic image by using one control point that indicates
the chosen horizon. When we sparsely define control points
at angular unconformities, the horizon-extraction method can
be improved to extract sequence boundaries. Of course, we
can also choose control points in complicated areas with noise
or chaotic reflectors to extract more reliable horizons in such
areas. Using the active-surface method, extracted horizons can
be well aligned with seismic peaks or troughs to reveal more
geologic detail.
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