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An all-in-one seismic phase picking, location, and
association network for multi-task multi-station
earthquake monitoring
Xu Si 1, Xinming Wu 1✉, Zefeng Li 1✉, Shenghou Wang2 & Jun Zhu 1

Earthquake monitoring is vital for understanding the physics of earthquakes and assessing

seismic hazards. A standard monitoring workflow includes the interrelated and inter-

dependent tasks of phase picking, association, and location. Although deep learning methods

have been successfully applied to earthquake monitoring, they mostly address the tasks

separately and ignore the geographic relationships among stations. Here, we propose a graph

neural network that operates directly on multi-station seismic data and achieves simulta-

neous phase picking, association, and location. Particularly, the inter-station and inter-task

physical relationships are informed in the network architecture to promote accuracy, inter-

pretability, and physical consistency among cross-station and cross-task predictions. When

applied to data from the Ridgecrest region and Japan, this method showed superior perfor-

mance over previous deep learning-based phase-picking and localization methods. Overall,

our study provides a prototype self-consistent all-in-one system of simultaneous seismic

phase picking, association, and location, which has the potential for next-generation auto-

mated earthquake monitoring.
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Earthquake monitoring is one of the most fundamental
operations in seismology. A standard earthquake monitor-
ing workflow involves a series of steps to detect and char-

acterize earthquakes, including phase picking, association, and
event location1–3. Phase picking, a conceptually simple task that is
akin to detection problems in computer vision, has recently been
improved through deep learning3–18, where convolutional neural
networks (CNNs)19 are typically used. After the phase picking,
traditional20–23 and deep-learning-based24–26 phase association
algorithms have been used to link seismic phases at multiple
stations from the same events. Finally, location algorithms27

utilize the associated phases to obtain the earthquake hypo-
centers, although some deep-learning-based methods directly
process raw data to locate earthquakes28–34.

These three tasks (phase picking, association, and location) are
closely interdependent. The accuracy of multi-station phase
picking affects the accuracy of association and location. Con-
versely, association and location impose constraints on multi-
station phase picking. Additionally, phase picking with multi-
station data can further utilize the geographic relationships and
waveform similarities among multiple stations. To achieve more
efficient and accurate earthquake monitoring, a suitable earth-
quake monitoring workflow should impose inter-task and inter-
station constraints and preferrably perform all three tasks
simultaneously at all stations. However, most existing earthquake
monitoring methods perform phase picking, association, and
earthquake location separately. In addition, most of the current
phase-picking methods process seismic data on a station-by-
station basis. While some recent graph-based approaches35–39

have demonstrated the ability to handle irregularly spaced sta-
tions for phase association and event location, it remains a
challenging task to develop a method that effectively leverages
inter-task and inter-station constraints, and ideally performs all
three tasks simultaneously.

Here, we propose an all-in-one earthquake monitoring system
called seismic Phase picking, Location, and Association Network
(PLAN) that achieves for the first time the simultaneous imple-
mentation of the three tasks with multi-station data and inter-
task constraints. PLAN consists of four interdependent neural
network modules. Specifically, the first module of waveform
feature extraction utilizes an encorder-decoder architecture to
extract relevant features from multi-station seismic data. The
second module of earthquake location encodes station locations
(i.e., longitude, latitude, and elevation) and merges them with
waveform features from the first module to predict the earth-
quake depth and epicentral distance for each station. The third
module of phase association utilizes the predicted earthquake
location information to estimate the time shifts required to align
multi-station waveform features. Finally, the fourth module of
phase picking aggregates the aligned features for simultaneous
multi-station phase picking. We applied PLAN in the Ridgecrest
and Japan regions and compared its efficiency and accuracy with
that of state-of-the-art phase-picking and event location methods,
demonstrating the merits of inter-station and inter-task con-
straints for accurate earthquake monitoring.

Results
Multi-station multi-task PLAN. The proposed multi-station
multi-task PLAN (Fig. 1) employs a Graph neural network
(GNN)40 as the backbone to integrate the four functional mod-
ules of waveform feature extraction, earthquake location, multi-
station association, and a physics-informed multi-station phase
picking (further details are provided in the Methods section).
Compared with CNN, GNN is naturally suited for handling
seismic data acquired from irregularly spaced stations38.

For the GNN in PLAN, the graph nodes and the feature vectors
are represented by the seismic stations and the corresponding
information (i.e., locations and seismograms), respectively. All
nodes are linked together and the linking weights are learnt
during training to infer the relationships among the stations. We
construct the GNN layers with TransformGConvs41, which are
designed based on an attention mechanism42 to learn the
dynamically linking weights among different stations. (Details
about TransformGConvs are provided in the “Methods” section).
In addition, the graph nodes are not fixed so that the GNN could
be adapted to variations in the station number and location.

Raw three-component seismic signals are feature vectors of the
graph nodes. The front-end waveform feature extraction module,
constructed as an encoder-decoder CNN and shared among the
nodes, extracts their corresponding key features. The station
feature extraction block, constructed as two MLPs and shared
among the nodes, extract geographic features from the normal-
ized input longitudes, latitudes, and elevations of the stations. The
earthquake location module then concatenates the extracted
waveform and geographic features and employs multiple
TransformGConvs to aggregate these features from multiple
nodes to predict the event depth and station-event offset. The
predicted offsets and depth are further used to determine the
event location by triangulation43. Instead of predicting the
hypocentral location, we predict the station-event offsets and
the depth, and feed them into the followed multi-station
association module to estimate to estimate the time shifts needed
to align the P-wave and S-wave arrivals.

The multi-station association module plays a key role in
bridging the tasks of earthquake location and multi-station phase
picking and introduces physical constraints between the two
tasks. Prior to aggregating the waveform features from different
stations for multi-station phase picking, the features correspond-
ing to the same earthquake are required to be initially aligned or
associated; otherwise, aggregation of unaligned features could
mutually interfere and ultimately degrade the picking perfor-
mance. The multi-station phase-picking module includes a non-
trainable physical layer, implemented with the Pytorch44 roll
function, to shift and align the waveform features (from the
decoder of the waveform feature extraction module) using the
time shifts. Subsequently, multiple TransformGConvs in the
phase-picking module aggregate the aligned waveform features to
enhance the phase-picking features in the aligned space.
Eventually, another physical layer unshifts the aggregated features
back to the original space, followed by two convolutional layers to
obtain the P/S-wave picks at all the stations.

Three regression loss functions are defined for the three
modules corresponding three tasks of phase picking, association,
and earthquake location and then combined to jointly train the
entire network. Because all the modules are interconnected within
the entire network, the training process finds an optimal network
that could perform all the tasks both accurately and consistently.
Moreover, after training, the multi-station association module
could be detached from the network and utilized to calculate the
S-P differential travel time with inputs: offsets and event depth.
Further details on this module are provided in the section titled
“Multi-station association module”.

Data preparation. We tested the proposed PLAN in two regions
of Ridgecrest and Japan. For the Ridgecrest region (Fig. 2a),
seismic recordings from 16 California Integrated Seismic Net-
work stations within an epicentral distance of <80 km were col-
lected from 1 January 2014, to 31 December 2021, for a total of
more than 71,000 M >−0.5 earthquakes. The data for Japan
(Fig. 3a) included M > 2 earthquakes that occurred between
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January 1, 2011, and December 31, 2011, including the Mw 9.1
Tohoku sequence. We collected the 3-component High Sensi-
tivity Seismograph Network (NIED Hi-net)45,46 data from over
35,000 events. Subsequently, the data were randomly divided into
training, validation, and test sets (85%, 5%, and 10%, respectively)
in both regions.

The number of stations corresponding to each event in the
training samples varied, and the trained network can flexibly
handle situations where the number of stations changes in actual
data. Further, the distributions of the number of stations per
event in the training and test sets were balanced. The results for
the test sets in the two regions are presented in Figs. 4 and 5,
respectively. To accommodate different range scales in the two
study regions, we used different window lengths in two regions
(30.72 s for Ridgecrest and 61.44 s for Japan) with the same
sampling frequency (100 Hz).

To ensure a fair comparison of PLAN with the existing phase-
picking methods, we followed the same data preprocessing
procedures used in previous studies6,12:(1) normalizing the data
by removing the mean and dividing by the standard deviation;(2)
using a Gaussian-shaped target function as training labels for the
P/S-phase arrival times. Thus, the probability vector of P/S wave
is the sum of a zero vector and a Gaussian window (0.4 s), with
the center of the window fixed at the P/S wave arrival time.

Application to seismicity in Ridgecrest region. We compared
the performance of PLAN with that of other established deep
learning methods for phase picking (PhaseNet6 and

EQTransformer12) and location (Aggreated-GNN36). All of the
methods were retrained on the same training set and evaluated on
a common test set. As shown in the Ridgecrest application
(Fig. 2b, c), the performance of PLAN in phase picking was
superior to that of the other two deep learning-based methods.
Specifically, the residual distribution of the P-wave picks for
PLAN was more concentrated than that of the other methods,
indicating a higher overall accuracy. For S-wave picks, PLAN
performed significantly better than EQTransformer because the
distribution of PLAN was narrower whereas the difference in
performance between PLAN and PhaseNet was relatively minor.

In terms of localization, our method (PLAN) outperformed
Aggregated-GNN (Fig. 2d–e and Table 1). The distribution of
PLAN was notably more concentrated than that of Aggregated-
GNN, particularly in terms of offset prediction. To further
demonstrate the effectiveness of TransformGConv, we replaced
all the TransformGConv layers in Supplementary Fig. 1 with
GCN40, SAGE47, and GATv248, respectively. Among the various
methods compared, PLAN yielded the lowest offset residual, with
an average error of 1.09 km and a standard deviation of 1.41 km.
Furthermore, PLAN also outperformed Aggregated-GNN in
terms of depth localization, regardless of whether it was based
on GCN, GATv2, or TransformGConv. These results demon-
strated the superiority of the proposed PLAN in location
estimations.

Furthermore, we used three metrics of mPrecision, mRecall,
and mF1 (described in the Methods section), to quantitatively
evaluate the performance of the five methods (Table 2). In five of

Fig. 1 The flowchart of the proposed multi-task and multi-station PLAN for earthquake monitoring. The input data for the model comprise seismic
waveforms recorded by multiple stations and the locations of these stations. PLAN consists of four sub-modules: waveform feature extraction encoder and
decoder, an earthquake location module, a multi-station association module and a physics-informed multi-station phase-picking module. All of these sub-
modules are optimized simultaneously and constrained by each other during training to improve performance in earthquake detection, association, and
location.
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the six metric scores for the P-wave and S-wave picking results,
our attention mechanism-based GNN method outperformed the
other methods. The only exception was the mPrecision metric of
P-wave picking, where the EQTransformer showed slightly higher
scores than PLAN. Notably, even the simplified version of the
multi-station phase-picking method, such as the SAGE-based
PLAN, outperformed both the single station-based picking
methods of EQTransformer and PhaseNet in mF1 scores for
S-wave picking. This indicated that the phase-picking accuracy is
significantly improved by multi-station picking, which effectively
utilizes inter-station contextual information.

We not only adjusted the time threshold while maintaining a
constant picking probability for evaluation but also fixed the time
threshold (True positive picks were defined as those within 0.5 s
of the predicted pick). By changing the probability of picking
threshold, we calculated and plotted the precision-recall curves
for four models (Supplementary Fig. 2). Given that the curves of
Trans-based PLAN consistently appear closer to the upper-right
corner, aligning with the results discussed earlier, it is evident that
the PLAN model exhibits superior performance in terms of
F1 score, encompassing both P-wave and S-wave picking.

Application to seismicity in Japan. We retrained all the methods
on the Japan training set for the evaluation. Compared to its
performance in the Ridgecrest region, PLAN exhibited an even
better performance in Japan (Fig. 3b, c). Further, PLAN
demonstrated a remarkably better performance than PhaseNet
and EQTransformer for both P- and S-wave picks. The offset
predicted by PLAN was notably more accurate than that

predicted by Aggregated-GNN, with a narrower residual dis-
tribution (Fig. 3d, e). In terms of depth estimation, although
PLAN maintained a narrower residual distribution, the center of
the distribution was shifted systematically, compared with the
Aggregated-GNN method. Table 1 presents the comprehensive
quantitative comparison of the results. Although the
TransformGConv-based PLAN method did not demonstrate
particular superiority in depth estimation, it excelled in offset
estimation (Table 1). Further, the GATv2-based PLAN showed
the lowest depth error, indicating potential improvement of
localization capabilities of the proposed PLAN.

Similar to the Ridgecrest example, we assessed the phase-
picking performance of various models applied to the test data
from Japan using mPrecision, mRecall, and mF1 metrics (Table 3)
and precision-recall curves (Supplementary Fig. 3). The
TransformGConv-based PLAN model achieved superior results
in terms of mRecall (95.14 for P-waves and 85.09 for S-waves)
and mF1 (95.46 for P-waves and 86.72 for S-waves), whereas
EQTransformer performed best in terms of mPrecision of
P-waves and S-waves. TransformGConv-based PLAN demon-
strated high mRecall scores, indicating that a large proportion of
the samples containing P/S-waves were correctly detected.
However, this was achieved at the expense of a slightly lower
mPrecision compared to that of the EQTransformer, with some
non-P/S-waves incorrectly classified as P/S-waves. The mF1 score
provided a more comprehensive evaluation of the model
performance, considering both the reduction in missed detections
and the increase in correct detections. In this context,
TransformGConv-based PLAN had the highest F1 score,

Fig. 2 Distributions of phase picking and location residuals in Ridgecrest region. a distribution of 16 stations (black triangles) and event locations of the
test dataset (blue circles) used in our study. The red points represent the earthquake locations predicted by PLAN. b and c are the results of P-wave and
S-wave arrival time residual, respectively. The blue, green, and orange lines in b and c represent the arrival time residuals for PLAN, PhaseNet, and
EQTransform, respectively. The proposed method yields the most accurate results in P/S-wave picking. d and e represent the offset and depth residuals
between model predictions and Southern California Seismic Network (SCSN) catalog of the located events. Regardless of the offset or depth, the residual
distribution of PLAN (blue line) is more concentrated at zero than that of Aggregated-GNN (orange line).
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Fig. 3 Distributions of phase picking and location residuals in Japan. a distribution of stations (black triangles) and events of the test data (blue points)
used in our study, where the events occurred between 1 January 2011 and 31 December 2011. The red points represent the earthquake locations predicted
by PLAN. Similar to Fig. 2b, c shows the results of P-wave and S-wave arrival time residuals, respectively. d and e depict the offset and depth residuals
between model predictions and the Japan Meteorological Agency (JMA) catalog of located events, respectively.

Fig. 4 Comparison of prediction results using different numbers of stations in the Ridgecrest region. The colorful curves in a–d represent the
distributions of prediction errors for P-wave, S-wave, offset, and depth, respectively. The x-axis represents the number of stations, the primary y-axis
denotes the prediction errors for phase picking and event localization of stations, and the secondary y-axis represents the number of events recorded by a
specific number. Note that for phase picking, prediction residuals of PLAN (blue curves) decrease evidently as the number of stations increases. Moreover,
the location errors of PLAN are significantly smaller than those of the Aggregated-GNN method.
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indicating that it effectively reduced the missed detections of P/S-
waves and increased the proportion of correct detections.

Application to the continuous waveforms of 2019 Ridgecrest
sequence. One key factor in assessing the effectiveness of an
earthquake monitoring approach is its ability to process con-
tinuous waveform data. PLAN assumes there always exist
earthquake signals on every station, and it ignores the case that
some stations only have pure noise. As a result, PLAN will issue
an earthquake alert even if no earthquake occurs. To address this
limitation, we have designed a PLAN-based workflow (Supple-
mentary Fig. 4) that incorporates specific threshold selection
procedures, enabling it to effectively handle continuous waveform
data and generate an earthquake catalog. (More details of this
workflow can be found in the Methods section.)

To assess the performance of this workflow in generating
earthquake catalogs, we chose the Ridgecrest earthquake sequence
for benchmarking. This choice was motivated by the availability
of several well-established earthquake catalogs for this region,
making it suitable for comparative analysis. To avoid data
leakage, we took the precaution of re-segmenting our training
dataset and made some data augmentation (More details of data
augmentation can be found in the Methods section). Subse-
quently, we applied the PLAN-based workflow with the retrained
model to process data recorded from July fourth (17:30:00) to July
ninth (00:00:00), thereby generating our own earthquake catalog
for benchmark comparisons.

We acknowledge that PLAN currently has limitations when
dealing with multiple events within a specific time window. In
such cases, PLAN focuses exclusively on the first event and
outputs the earthquake time and event location corresponding to
that event. Consequently, when working with a larger sliding
window, there is a risk of missing some events. To address this
problem, we implemented a more compact sliding window
approach in the continuous waveform data, with each window
spanning 30.72 seconds and a 25.72 second overlap between
consecutive windows. It’s worth noting that this overlap duration
is substantially shorter than what is typically employed in other
deep learning phase-picking methods designed for single stations.
The choice of such a large overlap maximizes the detectability for
the dense earthquakes within a short time period. In addition, an
example of event processing spanning adjacent time windows can
be found in Supplementary Fig. 5.

Since multiple well-established catalogs exist for the 2019
Ridgecrest earthquake sequence, we compare our catalog with
them, including SCSN, several deep learning-based methods
(such as Liu et al.11’s catalog, GaMMA23 and EQNet3), and
traditional template matching methods (such as Shelly49’s catalog
and Ross et al.50’s catalog). As there are no ground-truth catalogs

Fig. 5 Comparison of prediction results using different number of stations in Japan. The four distributions (a–d) are similar to those described in Fig. 4
and the only difference is that we have used logarithmic coordinates for the primary y-axis in a and b.

Table 1 Location performance in ridgecrest and Japan
regions.

Region Method Offset MAE
(km)

Depth MAE
(km)

Mean Std Mean Std

Ridgecrest Aggregated-GNN36 2.30 2.30 1.98 1.55
PLAN GCN 8.96 6.94 1.43 1.34

GATv2 8.95 6.90 1.42 1.33
SAGE 1.28 2.09 1.68 1.42
Trans 1.09 1.41 1.43 1.33

Hinet Aggregated-GNN36 27.92 26.78 10.30 8.95
PLAN GCN 21.30 16.47 13.50 9.95

GATv2 10.79 10.82 5.59 6.86
SAGE 4.87 6.11 12.85 9.41
Trans 4.81 5.83 10.62 8.89
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available for continuous waveform data, we employed the same
consistent cross-validation test (proposed by Zhu et al.3) across
different catalogs and utilized the same threshold (3 seconds) for
true positive counting. During the cross-validation test, the
evaluation metrics are significantly influenced by the number of
events. To ensure a fair comparison, we adjusted the threshold,
allowing PLAN to generate a catalog with a similar number of
events to some of the existing catalogs (a total of 24,270 events).
The temporal and spatial distribution of these events can be
found in Supplementary Fig. 6.

Supplementary Table 1 presents the precision, recall, and F1-
score results of the cross-validation test. These metrics are closely
tied to the number of events in the catalog. For example, when
considering the SCSN catalog as the benchmark, although Shelly’s
and Liu et al.’s catalog exhibit higher precision and F1 scores
compared to the others, it comes at the expense of lower recall.
These catalogs pick fewer events, leaving many true events
undetected. In such cases, the higher F1 score may not be a
meaningful reference. Additionally, the situation with GaMMA’s
catalog is similar. While its recall performance is comparable to
the catalogs of Ross et al. EQNet, and PLAN, GaMMA’s notably
high precision is also influenced by the number of events in its
catalog. The significant difference in the number of events in
GaMMA’s catalog, compared to existing catalogs, presents
challenges in its evaluation. Therefore, in the cross-validation
comparison, we primarily focus on catalogs with a higher number
of events.

When considering the SCSN or shelly’s catalog as the
benchmark, both the PLAN catalog and EQNet catalog exhibit
almost identical precision, recall, and F1-scores, all of which
slightly surpass the scores associated with Ross et al.’s catalog.
Furthermore, when employing Liu et al.’s catalog as the
benchmark, the PLAN catalog achieves the highest scores across
all three evaluation metrics when compared to other catalogs with
similar event quantities. Moreover, when Ross et al.’s catalog and
EQNet catalog are employed individually as benchmark, the
PLAN catalog consistently outperforms the other catalog in terms
of precision, recall, and F1-scores. This indicates that the events
detected by the PLAN catalog are consistently present in both

Ross et al.’s and EQNet catalogs, implying a high level of
credibility and a high likelihood of representing real earthquake
events. In conclusion, when processing continuous waveform
data, PLAN demonstrates performance that is either on par with
or slightly superior to other state-of-the-art methods, consistently
yielding a robust and high-quality catalog.

Discussion
PLAN is scalable for accommodating various numbers of stations
per event. As PLAN is a network level picking and location
model, we further investigated the effect of different numbers of
stations on the network performance for phase picking and
earthquake location with a test set of the Ridgecrest region
(Fig. 4). We calculated the P- and S-wave picking residuals of the
three different methods relative to the manual picking results,
respectively (Fig. 4a, b). The residuals of the single-station-based
picking methods, PhaseNet and EQTransformer, exhibited
oscillations for samples with station numbers 3-13 as the number
of stations increased. Contrastingly, the residuals of our simul-
taneous multi-station picking method, PLAN, exhibited a sig-
nificant residual decrease as the number of stations increased.
Although the prediction residuals of the single-station-based
methods should not be significantly associated with the number
of stations, their prediction residuals still decreased when the
number of stations was 13-16. This was probably because the
events recorded by more stations tended to be larger and easier
to pick.

A comparison of the distribution of prediction errors for
earthquake offsets and depths with respect to the number of
stations indicated that the errors in PLAN were significantly
smaller than those in the Aggregated-GNN method (Fig. 4c, d).
However, the errors in offset prediction did not exhibit a sig-
nificant decrease with an increase in the number of stations. This
was likely because a large number of stations would include more
distant ones that tended to have large offset prediction errors. As
the offset error metric is defined as the average value acquired
from multiple stations, an increase in the number of stations can
lead to a slightly higher average error for a single event.

Table 3 Detection performance in Japan.

P picking metrics S picking metrics

Method mPrecision mRecall mF1 mPrecision mRecall mF1

PhaseNet6 94.87 94.97 94.92 88.26 84.38 86.28
EQtransformer12 95.91 94.79 95.35 89.08 84.40 86.68
PLAN-GATv2 95.14 93.81 94.47 88.35 81.87 84.98
PLAN-SAGE 95.65 94.90 95.27 88.45 84.19 86.27
PLAN-Trans 95.79 95.14 95.46 88.41 85.09 86.72

The probability threshold for phase picking is 0.3.

Table 2 Detection Performance in Ridgecrest region.

P picking metrics S picking metrics

Method mPrecision mRecall mF1 mPrecision mRecall mF1

PhaseNet6 94.83 92.78 93.79 84.50 80.65 82.53
EQtransformer12 95.43 91.17 93.25 86.77 78.21 82.27
PLAN-GATv2 95.05 93.02 94.03 85.55 80.49 82.95
PLAN-SAGE 94.99 93.07 94.02 85.65 81.48 83.51
PLAN-Trans 94.65 94.90 94.77 86.88 84.94 85.90

The probability threshold for phase picking is 0.3.
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Furthermore, the statistical results for Japan (Fig. 5) were
similar to those for the Ridgecrest region, with the PLAN method
exhibiting smaller phase-picking errors than EQTransformer and
PhaseNet, especially for S-wave picking. In addition, as the
number of stations increased, the offset prediction error of PLAN
became significantly smaller than that of the Aggregated-GNN.

A similar pattern emerges when we compare the distribution of
prediction errors in relation to earthquake magnitude and signal-
to-noise ratio (SNR) (Supplementary Fig. 7 and Fig. 10). Larger
magnitude earthquakes, which are typically detected by more
seismic stations, exhibit reduced P- and S-wave picking errors, as
well as prediction errors for earthquake offsets and depths, in
both the Ridgecrest region and Japan. Additionally, larger SNR,
which is usually associated with higher-magnitude events or
seismic stations closer to the earthquake’s epicenter, also
demonstrates smaller picking errors. PLAN, EQTransformer, and
PhaseNet show nearly identical performance in terms of P-wave
picking errors as earthquake magnitude or SNR increases.
Nevertheless, our multi-station picking method exhibits a slight
advantage in S-wave picking compared to the other two single-
station picking methods, as evident from the narrower distribu-
tion of errors (especially in Supplementary Fig. 7b and Figs. 9b
and 10b). Moreover, PLAN excels in terms of its location per-
formance, particularly in offset prediction, surpassing
Aggregated-GNN (Supplementary Figs. 7c–10c). As earthquake
magnitude increases, the offset error for both PLAN and
Aggregated-GNN gradually decreases. Nonetheless, at any given
magnitude level in both the Ridgecrest region and Japan, the
offset error of PLAN remains lower than that of Aggregated-
GNN (as depicted in the trends shown in Figs. 4c and 5c).

The ability of our network to handle varying numbers of sta-
tions can be attributed to the multi-station association module,
which can be separated from the entire network and utilized in a
manner similar to the Taup algorithm for estimating the arrival
time of earthquakes at stations. Differing from the Taup algo-
rithm, our association module does not depend on an input
velocity model. Instead, it empowers the network to comprehend
the concept of velocity, enabling the conversion of offsets into
relative time shifts. Additionally, unlike the sequential processing
of one station at a time in the Taup algorithm, our module
simultaneously calculates the time shifts for multiple stations
associated with a single event. In essence, our association module
can be considered a computationally efficient 3D Taup algorithm
that operates without requiring a velocity model. To evaluate the
estimation accuracy of the arrival time using this module, we
applied the estimated time shifts to align different stations
(Supplementary Fig. 11). Because the multi-station association
module can accurately estimate the arrival time, the original
waveforms from all stations were aligned accordingly.

To further evaluate the estimation accuracy of the arrival time
using this module, we employed the TauP algorithm based on the
PREM model51 for comparison (Fig. 6). We also calculated the
correlation coefficient (R) between the output of each method and
the manually picked P/S-wave time differences. During the
training process, this module used the offsets and depths obtained
from the earthquake location module as inputs. Therefore,
inputting the predicted offsets and depths into this module
(Fig. 6d) could yield better P/S-wave time differences than
inputting the labeled offsets and depths (Fig. 6c). The multi-
station association module with manually labeled offsets and
depths yielded less consistent results than the TauP algorithm.
This discrepancy may not be solely attributable to errors in the
deep learning estimation. Label inaccuracies may have also con-
tributed to this outcome. This assertion was supported by the
observation that using the neural network output as the input for
the TauP algorithm resulted in greater correlation coefficients

than when label was employed (Fig. 6a, b). Among all the eval-
uated methods, the estimation results in Fig. 6d show the highest
correlation coefficients. Generally, the multi-station association
module and the TauP algorithm based on the PREM model have
the same level of accuracy in calculating P/S-wave time
differences.

Since we have demonstrated that our association module can
accurately generate P/S-wave time differences, it is important to
note that when processing continuous waveform data, the Taup
algorithm cannot reliably estimate wave travel times due to the
lack of precise event location information. In contrast, our
association module can provide more accurate estimates of P/S-
wave time differences, enabling the determination of which sta-
tions are associated with the event (Supplementary Fig. 5).

Certain limitations persist within our method, particularly in
processing continuous waveform data. While PLAN demon-
strates strong performance on test data, it still struggles to provide
highly accurate results in offset and depth estimation for con-
tinuous waveform data, and it may not match the precision of
traditional localization methods. To enhance the accuracy of
event localization, incorporating joint relocation algorithms, such
as hypoDD52, into the workflow’s final steps would be beneficial.
Furthermore, while we employ cross-validation to compare dif-
ferent catalogs in the Ridgecrest region, comparing catalogs that
vary in the number of events remains a challenge. Therefore,
developing an approach to compare the performance of various
catalogs in the absence of ground truth data may be an urgent
task for future research.

Moreover, the issue of generalization remains a concern. As the
multi-station association module learns velocity concepts during
training, pre-trained models from other regions may yield sub-
optimal results, particularly in regions with significant velocity
variations. Although limited generalization is feasible in smaller
geographic areas, such as employing a model trained on Southern
California data for earthquake monitoring in Northern Cali-
fornia. To address this concern, training region-specific models is
a viable approach, as exemplified in our paper, where two distinct
models were trained for the Ridgecrest region and Japan.

However, despite PLAN’s challenges with generalization, its
multi-station association module, which learns velocity concepts
during training, offers deeper insights into specific regions. It’s
important to note that our current association module primarily
captures relative velocities. Nevertheless, with adjustments to the
labels of shift vectors, it can potentially learn absolute velocities.
By inputting hypothetical offsets and depths for each grid in a
region, the module could generate corresponding P and S-wave
arrival times. Utilizing the time differences and distances between
these grids, we can construct a 3D velocity model for a specific
region. Thus, while our method may not yet generalize to a
broader range of areas, it introduces a concept and possibility in
the future: achieving a region’s velocity model concurrently with
training an earthquake monitoring model using region-specific
datasets.

In summary, we present a novel all-in-one multi-task multi-
station system called PLAN for earthquake monitoring, which is
capable of simultaneous phase picking, phase association, and
earthquake location. Unlike current CNN-based methods that
perform phase picking station-by-station, phase association, and
location separately, our proposed GNN-based multi-station
multi-task system best utilizes the inherent inter-task and inter-
station constraints. The multi-station association module esti-
mates the phase shift and improves the robustness and accuracy
of the phase association process. Eventually, the resulting offsets
and depth enables accurate event localization. Our method
demonstrates the need to factor mutual constraints among tasks
and stations into next-generation earthquake monitoring systems.
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Methods
Graph based neural network. Several studies have shown that
GNNs have the potential to deal with irregularly spaced stations
for phase association and event localization14,16,35–39. Here, we
build a graph-based network (Fig. 1) for mult-station earthquake
monitoring. To utilize the GNN, we first need to change the data
from the matrix format to the graph format and employ a graph-
based representation of the stations, where each station is
represented as a node in the graph and the three-channel data
and the station location are used as the features of each node. In
contrast to the current single-station processing methods4–12,15,
which treat each three-channel data as an individual input sam-
ple, our approach inputs all the three-channel data received from
multiple stations per event as a single sample. This allows for
efficient aggregation of information from multiple stations during
network training. As a result, the features of different stations
could be effectively integrated using GNNs during the aggrega-
tion process.

In this study, we have evaluated various graph aggregation
methods, including GCN40, GraphSAGE47, GAT53, GATv248,
and TransformGCONV41. Through this evaluation, we have
determined that TransformGCONV, which is based on attention
mechanism42, is the most suitable module for the proposed
PLAN. The message aggregation of TransformGCONV could be
represented as:

x0i ¼ W1xi þ ∑
j2N ðiÞ

αi;jW2xj; ð1Þ

where x0i represents the aggregated features at the source node,
and xi and xj represent the features of the source and distant
nodes before aggregation, respectively. W1 and W2 are the
trainable matrices. In addition, the attention coefficients αi,j are
computed via dot-product attention as follows:

αi;j ¼ softmax
W3xi
� �>

W4xj
� �

ffiffiffi
d

p
0

@

1

A; ð2Þ

Fig. 6 Comparison of the P/S-wave arrival time estimation using different methods. a and b show the crossplots of the S-P differential arrival times
computed by the TauP model with the input of offsets and depths from manual labels and network predications, respectively. The x-axis represents the
manually picked S-P differential arrival times. The y-axis represents the S-P differential arrival times obtained by different methods.The crossplots in c and
d show the S-P differential arrival times predicted by our multi-station association module, and they are consistent with those predicted by the TauP model.
This indicates that the multi-station association module, detached from the entire trained PLAN model, works physically reasonable compared to the
commonly used TauP model.
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where W3 and W4 are the trainable matrices. Similar to the
attention mechanism42, the source feature xi and distant feature xj
are transformed into query vector and key vector, respectively,
using W3 and W4. Compared to other graph aggregation
methods, the use of the attention-based mechanism (equation
1) in TransformGCONV allows for a more fine-grained
representation of the relationship between different stations,
thereby improving the accuracy and efficiency of the proposed
method.

Network Architecture. Here, we design a multi-station multi-
task network for simultaneous phase picking, association, and
location. The network (Supplementary Fig. 1) comprises four
components: a waveform feature extraction module, an earth-
quake location module, a multi-station association module, and a
physics-informed multi-station phase-picking module. Similar to
previous deep-learning-based phase-picking approaches3,6,12,15,
we design an encoder to extract waveform features and a decoder
to produce phase-picking results. However, to address the multi-
station phase-picking problem, we introduce the GNN-based
TransformGCONV for aggregating features from multiple
stations.

Because aligned waveform features are easily used and
aggregated in GNNs for multi-station phase picking, we do not
employ it in the waveform feature extraction module (Supple-
mentary Fig. 1a), where the features are relatively shifted in time.
Although we use a U-shape neural network for feature extraction
to solve the phase-picking problem, it could be replaced with
other single-station-based phase-picking networks, such as
EQTransformer. No matter what type of network architecture
is used, the features extracted from the middle of the network are
input into the earthquake location module, and the structure of
the final few layers of the network are modified for the purpose of
multi-station phase picking. Additionally, the kernel size of all
convolutional layers in the waveform feature extraction network
is set to 7.

For the earthquake location module (Supplementary Fig. 1b),
we first extract features from the normalized coordinate
information of the stations within the range of [0,1] through
two fully connected layers (3-48-96). Simultaneously, the wave-
form features extracted from each station are further processed
through several convolutional layers and then flattened. Subse-
quently, the position and waveform features are concatenated and
passed through two fully connected layers (192-192-96). This
fuses the position and waveform features at each station. The
fused features are further aggregated among multiple stations by
several GNN layers to predict the offsets of each station with
respect to the event and its depth. Because there is only one depth
parameter for each sample, we add a global average pooling
before the output. In summary, this module allows the integration
of both location and waveform information into the feature
extraction process, which is crucial for accurate event localization.

Finally, in the physics-informed multi-station phase-picking
module (Supplementary Fig. 1d), we incorporate physics-
motivated constraints of time alignment among waveforms
corresponding to the same earthquake event. We first utilize a
mulit-station association module (Supplementary Fig. 1c) to
calculate the relative alignment shifts between stations using the
estimated offsets and the depth of the event. We then use the
shifts to align the waveforms to a common time standard and
aggregate the features across multiple stations in the phase-
picking module. Subsequently, the aggregated features at each
station are unaligned and fed to two layers of convolution to yield
final P/S-wave picking results. This process leverages the physical

information of the event location to improve the robustness and
accuracy of the multi-station phase picking.

Multi-station association module. To simultaneously pick P/S-
waves from multiple stations, PLAN utilizes GNNs, which typi-
cally aggregates raw signals received at different stations. Feature
aggregation across multiple stations introduces inter-station
constraints and enhances the features at each station. However,
because of different travel times of the same source across dif-
ferent stations, directly aggregating the signals from multiple
stations would deteriorate multi-station picking. To address this
issue, the proposed method employes a multi-station association
module to estimate the time shifts as illustrated in Fig. 1. The
input to this module is the offset of each station with respect to
the event and its depth. The module output is the corrected time
shifts of the P/S-wave for each station. Using the criteria, the
multi-station association module was trained to estimate the
corrections of P/S-wave for each station. These corrections are
then used to align the waveform features, enabling the graph
convolution to aggregate the features in a temporally aligned
space. Consequently, the method could enhance or compensate
for the features at each station by fusing the aligned features from
other stations, allowing simultaneous and accurate multi-station
picking.

To assess the impact of the Multi-station association module
on our picking results, we conducted a comparative analysis by
training a neural network without this module and contrasting its
performance with PLAN (Supplementary Fig. 12). Across all sub-
figures, it is consistently evident that the method without the
association module exhibits more pronounced overfitting, result-
ing in higher loss and lower accuracy compared to PLAN. These
findings affirm the efficacy of the introduced multi-station
association module in enhancing the network’s picking perfor-
mance and bolstering the model’s overall robustness.

The multi-station association module can be utilized indepen-
dently after training. It converts the distance and depth
information into arrival information and calculates the S-P
differential travel time54. Supplementary Fig. 13 illustrates the
arrival time differences of the P/S-waves at various stations in
Japan. Although the training process utilizes a maximum of
37 stations for a single event, the module can be adapted to cases
with any number of stations (e.g., hundreds of stations shown in
Supplementary Fig. 13a–d) to estimate the P/S-wave arrival time
differences for all stations. These results indicated that the
module effectively enforced physical constraints based on time
shifts within the overall network.

Workflow of processing continuous waveform. To enable the
application of PLAN to continuous waveform data, we have
designed a PLAN-based workflow that incorporates specific
threshold selection procedures, allowing for the subsequent gen-
eration of a catalog (Supplementary Fig. 4). To ensure the stability
of PLAN and its applicability to processing the continuous
waveform of the 2019 Ridgecrest sequence, we conducted a
retraining process by re-segmenting our training dataset. This
process involved excluding data recorded during earthquakes that
occurred between July 4th, 2019, and July 9th, 2019. Additionally,
during the training process, we introduced data augmentation
techniques, including random shifts applied collectively to the
waveform windows of all stations. The maximum allowable shift
was set to 2 seconds. This approach aimed to improve the model’s
adaptability to variations in picking positions within the wave-
form windows extracted from continuous data. Once the
retraining was completed, we were able to utilize the retrained
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model for processing continuous waveform data using the fol-
lowing steps:

(1) Initial prediction: We apply the retrained PLAN model to
the continuous waveforms to obtain initial phase picks in
the overlapped windows.

(2) Shift and stack: We use the responses of P and S wave on
multiple stations (i.e., the output of the Physics-
Information Multi-Station Phase Picking Module in Fig. 1)
to detect potential events. Similar to the “shift and stack”
strategy widely used in array seismology, we shift the
responses to the origin time using the P and S wave shifts
(i.e., predicted by the Multi-Station Association Module)
and stack them. If the stacked P/S wave response exceeds a
threshold (2.4 and 1.2 for P and S wave), the window is
expected to contain an event occurring when the stacked
response peaks.

(3) Station selection: For the events detected by “Shift and
stack”, we need to use the picks on different stations to
further locate the events. The stations need to be filtered as
not every station has picks in the window; not every pick in
the window is associated with the origin time estimated by
Shift and stack. Only those picks near the theoretical
moveout can be used to locate the event. Specifically, the
shifted P and S pick should simultaneously exceed a
probability threshold (0.24 and 0.12 for P and S wave) and
be near the origin time ( < 2 s). If > 4 stations meet the
criteria, the detected event can be further located.

(4) Catalog generation: In the final step of our process, we
input all the candidate stations into PLAN to predict the
earthquake time and hypocenter. The earthquake time is
calculated using the commonly assumed uniform velocity
model of 6 km/s for P waves and 3.4 km/s for S waves in the
Ridgecrest region. Simultaneously, the hypocenter is
estimated through triangulation using the predicted offsets
and depth (i.e., predicted by the Earthquake Location
Module). After processing all the overlapped windows, we
get a preliminary earthquake catalog from the continuous
waveforms. Due to the large overlap, events can be detected
by PLAN more than once. We remove the duplicate
detections by limiting the minimal separation between
consecutive occurrences to 2 s.

Loss function and training details. Our multi-task learning
network model has three output results corresponding to phase
picking, phase association, and earthquake localization. To train
the model, we define three different loss functions for these three
different tasks. For phase picking, instead of using the commonly
used cross-entropy, we choose the mean square error (MSE) as
the loss function, which is suitable for training in multi-task
problems. To estimate offsets and depth, which is similar to event
localization, we also use MSE as the loss function, as suggested by
previous studies36,39. Finally, to calculate the P/S-wave shift, we
define the loss function as follows:

LΔp ¼ ∑
n

i¼1
jCTimep � labelpi þ Δtpi

� �
j; ð3Þ

LΔs ¼ ∑
n

i¼1
jCTimes � labelsi þ Δtsi

� �
j; ð4Þ

where CTimep and CTimes represents the reference times where
the P- and S-wave picks are aligned, respectively. The reference
times for the P/S-wave features were set at the 10 and 15 s in the
Ridgecrest region and at the 20 and 32 s in Japan. Additionally, to
process continuous waveform data, the reference time for both

the P/S-wave features in the retrained model for the 2019 Rid-
gecrest sequence processing was set to 0 seconds. Moreover,
labelpi or labelsi represents the manually picked P/S-wave arrival
time for each station, and Δt represents the predicted P/S-wave
shift. Finally, we combine the three types of loss functions to form
the overall objective function:

Ltotal ¼ λ1Lpicking�p þ λ1Lpicking�s þ λ2LΔp

þ λ2LΔs þ λ3Loffset þ λ3Ldepth:
ð5Þ

Here, we set the coefficients λ1, λ2, and λ3 to 1.
During the training process, the model was optimized using the

ADAM55 method with an initial learning rate of 0.001, which is
gradually decreased with a decay rate of 0.9 every 100 epochs. To
enhance the training efficiency, we randomly selected 2048 events
from the training set for each epoch, rather than using the entire
data. The model was trained for a total of 2000 epochs with a
batch size of 16, and the training process required approximately
24 h using 1 NVIDIA Tesla A100 GPU.

Evaluation metrics. In previous studies3,12, true positive phase
picks were defined as those within 0.5 s of the predicted pick. The
rest were counted as false positives. Nevertheless, owing to
potential errors in the labels of the dataset, such statistical results
based on a single threshold may not be reliable. Thus, to better
evaluate the performance of algorithms, we introduce new
metrics, mPrecision, mRecall, and mF1, which are calculated
using multiple thresholds, following previous research56. The
metrics are defined as:

mPrecision

¼ ðPrecision@11þ Precision@12þ � � � þ Precision1@50Þ=40;
ð6Þ

mRecall ¼ ðRecall@11þ Recall@12þ � � � þ Recall1@50Þ=40;
ð7Þ

mF1 ¼ ðF1@11þ F1@12þ � � � þ F1@50Þ=40: ð8Þ
where x@11, x@12,⋯ , x@50 are Precision, Recall, or F1 metrics
when the thresholds are 11, 12,⋯ , 50 samples (corresponding to
0.11 s, 0.12 s,⋯ , 0.5 s of time), respectively. These metrics,
mPrecision, mRecall, and mF1 reward detectors with better
picking results and, therefore, can more reasonably or fairly assess
the performance of the different methods.

Data availability
The event IDs utilized in Ridgecrest region are available for download from (https://
service.scedc.caltech.edu/eq-catalogs/date_mag_loc.php). They can be selected following
the details described in the data preparation section. Thus, the event waveform data used
in Ridgecrest region can be downloaded from the Southern California Seismic Network
(SCSN) website (https://service.scedc.caltech.edu/webstp/). The continuous data can be
downloaded from (https://service.scedc.caltech.edu/fdsnws/station/1/). The event
waveform and continuous data for Japan can be downloaded from HiNet (https://
hinetwww11.bosai.go.jp/auth/download/event/?LANG=en, for registered user). Maps
and figures were made with PyGMT57 and Matplotlib58.

Code availability
The source code associated with this research has been made openly available. The code
can be accessed via the following link: https://github.com/sixu0/PLAN4Earthquake_
Monitoring.
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